Statistical interence based on studentized robust statistics

基于学生化稳健统计的统计干预

基本信息

  • 批准号:
    10640129
  • 负责人:
  • 金额:
    $ 0.64万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1998
  • 资助国家:
    日本
  • 起止时间:
    1998 至 1999
  • 项目状态:
    已结题

项目摘要

We considered two-sample and multivariate two-way manova model included in YィイD2iィエD2=h(xィイD2iィエD2,θ) + εィイD2iィエD2, i=1,・・・, n,θ∈Θ where εィイD2iィエD2, i=1, ・・・, n, are mutually independent and identically distributed with a p-variate continuous distribution function F(x,Σ) having null mean and finite positive definite variance-covariance matrix Σ. In pratical applicational model assumptions, the scale-parameter of the underlying distribution is unknown and Fisher's consistency does not hold. We need to construct flexible statistical procedures. So scale invariant statistical procedures based on M-statistics were proposed. Their asymptotic noncentral xィイD12ィエD1-distributions for testing homogeneity were drawn under a contiguous sequence of location-alternatives without assuming Fisher consistency : ∫ψィイD2lィエD2(xィイD1(l)ィエD1)dFィイD2lィエD2(xィイD1(l)ィエD1)=0. Asymptotic robustness was derived. The permutation tests based on the proposed M-test statistics were considered. Using a Monte Carlo simulation, their power was compared with permutation tests based on parametric test statistics. Next robust estimators for location parameters were proposed, based on studentized M-statistics. The asymptotic normality of these estimators was drawn. After a simple algorithm was studied, the risks of the M-estimators and the least squares estimators were compared due to a simulation. For a univariate case, it was found that (i) the asymptotic relative efficiency (ARE) of the proposed M-procedures relative to parametric procedures agreed with the ARE of one-sample M-estimator proposed by Huber (1964) relative to the sample mean, and that (ii) for small sample sizes, the M-procedures were more efficient than parametric procedures except the case that an underlying distribution is normal.Moreover many computer soft programs were created and shrinkage estimators were discussed.
本文考虑了两样本多变量双向双方差模型Y_(?)D_(?)D_(?)D_(?)=h(x_(?)D_(?)D_(?)D_(?),θ)+ ε_(?)D_(?)D_(?)D_(?)D_(?),i = 1,···,n,θ∈Θ,其中ε_(?)D_(?)D_(?)D_(?)D_(?)D_(?)D_(?),i=1,···,n,n,相互独立,同分布,p-变量连续分布函数F(x,n)具有零均值和有限正定的方差-协方差矩阵。在实际应用模型假设中,底层分布的尺度参数是未知的,Fisher的一致性不成立。我们需要建立灵活的统计程序。因此,提出了基于M-统计量的尺度不变统计方法。在不假设Fisher一致性的情况下,在连续的位置选择序列下绘制了检验同质性的渐近非中心x D12 D1分布:D2 l D2(x D1(l)D1)dF D2 l D2(x D1(l)D1)=0。渐近鲁棒性。考虑了基于M检验统计量的排列检验。使用蒙特卡罗模拟,他们的权力进行了比较,置换检验的基础上参数检验统计。其次,基于学生化M-统计量,提出了位置参数的稳健估计。这些估计量的渐近正态性。在研究了一种简单算法后,通过仿真比较了M-估计量和最小二乘估计量的风险。对于单变量情形,我们发现:(i)所提出的M-方法相对于参数方法的渐近相对效率(ARE)与Huber(1964)提出的单样本M-估计量相对于样本均值的ARE一致;(ii)对于小样本情形,M-除了基本分布是正态分布的情况外,参数方法比参数方法更有效。此外,许多计算机软件程序被创建,讨论了收缩估计量。

项目成果

期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
T.Shiraishi: "studeutized robust statistics in multivariat randomized block clesisu" Journal of Nonparametric Statistics. 10. 95-110 (1998)
T.Shiraishi:“研究了多元随机块 clesisu 中的稳健统计”非参数统计杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Y, Konno: "Order-preseuving estimators of eigenvalues of the scale matiy in the multivariate Fdistuiuibution under Steiu's function"Applied Stafistical Science. 3. 203-213 (1998)
Y,Konno:“Steiu 函数下多元 F 分布中标度 matiy 的特征值的有序估计量”应用统计科学。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T. Shiraishi: "Studentized robust statistics for main effects in a two-factor MANOVA."Communications in Statistics, Ser A. 28. 809-823 (1999)
T. Shiraishi:“研究了双因素多元方差分析中主效应的稳健统计。”Communications in Statistics,Ser A. 28. 809-823 (1999)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Karia,Y.Konnoo,W.E.Strawderman: "Construction of shrinkage estimators."Communications in Statistics,Ser A. 28・3&4. 597-611 (1999)
T.Karia、Y.Konnoo、W.E.Strawderman:“收缩估计器的构造”。《统计通讯》,Ser A. 597-611 (1999)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T. Shiraishi: "Comparison of statistical procedures in a two-sample model."Bulletin of The Computational Statistics of Japan. 11. 13-24 (1998)
T. Shiraishi:“两个样本模型中统计程序的比较。”日本计算统计公报。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SHIRAISHI Takaaki其他文献

SHIRAISHI Takaaki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SHIRAISHI Takaaki', 18)}}的其他基金

Multiple comparison procedures based on robust statistics
基于稳健统计的多重比较程序
  • 批准号:
    20540126
  • 财政年份:
    2008
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Exploratory statistical theory after searching the underlying distribution
搜索潜在分布后的探索性统计理论
  • 批准号:
    16540112
  • 财政年份:
    2004
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Asymptotic theory and infinite-dimensional stochastic calculus
渐近理论和无限维随机微积分
  • 批准号:
    23H03354
  • 财政年份:
    2023
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Nonparametric change-point analysis, invariance principles for multivariate Student processes, and asymptotic theory in linear errors-in-variables models
非参数变点分析、多元学生过程的不变原理以及线性变量误差模型中的渐近理论
  • 批准号:
    RGPIN-2018-05052
  • 财政年份:
    2022
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Discovery Grants Program - Individual
Nonparametric change-point analysis, invariance principles for multivariate Student processes, and asymptotic theory in linear errors-in-variables models
非参数变点分析、多元学生过程的不变原理以及线性变量误差模型中的渐近理论
  • 批准号:
    RGPIN-2018-05052
  • 财政年份:
    2021
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Discovery Grants Program - Individual
Nonparametric change-point analysis, invariance principles for multivariate Student processes, and asymptotic theory in linear errors-in-variables models
非参数变点分析、多元学生过程的不变原理以及线性变量误差模型中的渐近理论
  • 批准号:
    RGPIN-2018-05052
  • 财政年份:
    2020
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Discovery Grants Program - Individual
High-dimension, low-sample-size asymptotic theory for nonlinear feature selection
用于非线性特征选择的高维、低样本量渐近理论
  • 批准号:
    20K22305
  • 财政年份:
    2020
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Higher-order asymptotic analysis of nonconformal iterative function systems with infinite graphs by asymptotic theory construction of transfer operators
基于传递算子渐近理论构造的无限图非共形迭代函数系统的高阶渐近分析
  • 批准号:
    20K03636
  • 财政年份:
    2020
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
WoU-MMA: Gravitational Wave Coupling with Inhomogeneous Plasma and Asymptotic Theory of Polarization Effects in Curved Spacetime
WoU-MMA:非均匀等离子体的引力波耦合和弯曲时空极化效应的渐近理论
  • 批准号:
    1903130
  • 财政年份:
    2019
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Standard Grant
Nonparametric change-point analysis, invariance principles for multivariate Student processes, and asymptotic theory in linear errors-in-variables models
非参数变点分析、多元学生过程的不变原理以及线性变量误差模型中的渐近理论
  • 批准号:
    RGPIN-2018-05052
  • 财政年份:
    2019
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Discovery Grants Program - Individual
Asymptotic theory based on molecular dynamics of vapor-liquid system
基于汽液系统分子动力学的渐近理论
  • 批准号:
    18K18824
  • 财政年份:
    2018
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Nonparametric change-point analysis, invariance principles for multivariate Student processes, and asymptotic theory in linear errors-in-variables models
非参数变点分析、多元学生过程的不变原理以及线性变量误差模型中的渐近理论
  • 批准号:
    RGPIN-2018-05052
  • 财政年份:
    2018
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了