Kinetic-theoretic studies of the effect of sharp edges of the boundary in low-pressure gases
低压气体边界锐边效应的动力学理论研究
基本信息
- 批准号:10650171
- 负责人:
- 金额:$ 1.92万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1998
- 资助国家:日本
- 起止时间:1998 至 1999
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1. Study of a rarefied gas flow induced around edges of a uniformly cooled or heated plate :In our previous paper, we showed, by means of a numerical analysis using the direct simulation Monte Carlo method, that a fairly strong gas flow is induced around the edges of a uniformly cooled or heated plate placed in a rarefied gas. In the present study, in order to obtain the result with higher reliability, we investigated the flow by an accurate finite-difference analysis of a kinetic equation. As a result, the behavior of the gas was clarified comprehensively. In particular, it was confirmed that the flow has a stronger effect than the thermal creep flow and the flow induced by the thermal stress in the near continuum case.2. Study of a rarefied gas flow caused by a discontinuous wall temperature :We have investigated a rarefied gas flow induced in a container when the temperature of the wall of the container has a discontinuous distribution. The flow was obtained accurately for a wide ra … More nge of the degree of gas rarefaction by applying the finite-difference method developed in 1. We showed that, as the continuum limit is approached, though the region with an appreciable flow shrinks to the discontinuity line of the wall temperature, the maximum speed of the flow tends to approach a finite value. In addition, we have clarified the propagation of singularities, caused by the singularities in the boundary data, mathematically on the basis of a simple transport equation that possesses the feature of the equations in kinetic theory of gases.3. Studies of some other fundamental problems :Paying attention to another aspect of a well-known flow induced by a temperature field (thermal transpiration), we studied the control of the flow in a pipe (e. g., causing a one-way flow) by devising the temperature distribution as well as the configuration of the pipe. We have also investigated the fundamental features of the continuum limit for gas mixtures, the understanding of which facilitates the extension of the analyses of 1 and 2 to the case of the mixtures. Less
1.均匀冷却或加热板边缘周围诱导的稀薄气流的研究:在我们之前的论文中,我们通过使用直接模拟蒙特卡罗方法的数值分析表明,放置在稀薄气体中的均匀冷却或加热板的边缘周围会诱导相当强的气流。在本研究中,为了获得可靠性更高的结果,我们通过对动力学方程进行精确的有限差分分析来研究流动。结果,气体的行为得到了全面阐明。特别是,在近连续介质情况下,证实了该流动比热蠕变流动和热应力诱导流动具有更强的影响。 2.由不连续壁温引起的稀薄气流的研究:我们研究了当容器壁温度具有不连续分布时在容器中引起的稀薄气流。通过应用1中开发的有限差分方法,可以准确地获得大范围气体稀疏度的流动。我们表明,随着接近连续极限,尽管具有明显流动的区域收缩到壁温的不连续线,但流动的最大速度趋于接近有限值。此外,我们还基于一个具有气体动力学方程特征的简单输运方程,从数学上阐明了由边界数据奇点引起的奇点传播。 3.其他一些基本问题的研究:关注由温度场引起的众所周知的流动(热蒸腾)的另一个方面,我们通过设计温度分布和管道的配置来研究管道中流动的控制(例如,引起单向流动)。我们还研究了气体混合物连续介质极限的基本特征,对其的理解有助于将1和2的分析扩展到混合物的情况。较少的
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
K. Aoki: "Numerical analysis of a rarefied gas flow induced near the edges of a uniformly cooled or heated plate"Book of Abstract, 4th International Congress on Industrial and Applied Mathematics (ICIAM99, Edinburgh, 1999). 155
K. Aoki:“均匀冷却或加热板边缘附近引起的稀薄气流的数值分析”摘要书,第四届国际工业与应用数学大会(ICIAM99,爱丁堡,1999 年)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Kazuo Aoki: "Numerical analysis of a rarefied gas flow induced near the edges of a uniformly cooled or heated plate"Book of Abstract, the Fourth International Congress on Industrial and Applied Mathematics. 155 (1999)
青木一夫:“均匀冷却或加热板边缘附近引起的稀薄气流的数值分析”摘要书,第四届国际工业与应用数学大会。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Kazuo Aoki: "A rarefied gas flow caused by a discontinuous wall temperature"Research Report, Section of Dynamics in Aeronautics and Astronautics Dept. of Aeronautics and Astronautics, Kyoto University. (1999)
青木和夫:“由不连续壁温引起的稀薄气流”研究报告,京都大学航空航天系航空航天动力学部分。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Shigeru Takata: "Two-surface problems of a multicomponent mixture of vapors and noncondensable gases in the continuum limit in the light of kinetic theory"Physics of Fluids. Vol.11, No.9. 2743-2756 (1999)
Shigeru Takata:“根据动力学理论,蒸汽和不可凝气体多组分混合物在连续介质极限中的两个表面问题”流体物理学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K. Aoki: "A rarefied gas flow caused by a discontinuous wall temperature"Research Report, Section of Dynamics in Aeronautics and Astronautics, Department of Aeronautics and Astronautics, Graduate School of Engineering, Kyoto University. 2000
K.青木:“由不连续壁温引起的稀薄气流”研究报告,京都大学工学研究科航空航天系航空航天动力学部。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
AOKI Kazuo其他文献
AOKI Kazuo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('AOKI Kazuo', 18)}}的其他基金
Drying and dehydration in swelling materials
溶胀材料的干燥和脱水
- 批准号:
21560206 - 财政年份:2009
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Discontinuous boundary conditions for the Boltzmann equation And generalization of slip boundary conditions
玻尔兹曼方程的不连续边界条件和滑移边界条件的推广
- 批准号:
21656026 - 财政年份:2009
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Development and evaluation of a foot grip strength measurement tool for prediction of fall accident risk
用于预测跌倒事故风险的足部握力测量工具的开发和评估
- 批准号:
20570231 - 财政年份:2008
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Prevalence of H. pylori Infection and Chronic Atrophic Gastritis in the Dominican Children
多米尼加儿童幽门螺杆菌感染和慢性萎缩性胃炎的患病率
- 批准号:
20590606 - 财政年份:2008
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical and physical study of micro- and nano-scale gas flows on the basis of the Boltzmann equation
基于玻尔兹曼方程的微纳尺度气体流动的数学和物理研究
- 批准号:
20360046 - 财政年份:2008
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
The Freezing in Colloidal Suspension and the Control of Fine Particles by Alternating Electric Field
胶体悬浮液的冻结及交变电场对细颗粒的控制
- 批准号:
19560198 - 财政年份:2007
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Epidemiological Study on the Effect of Helicobacter Pylori Infection on Chronic Atrophic Gastritis in Different Ethnic Groups
不同民族幽门螺杆菌感染对慢性萎缩性胃炎影响的流行病学研究
- 批准号:
18406022 - 财政年份:2006
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
The Effects of Electric Double Layer on Freezing and dehydration in Fine Packed Beds with Liquid Content
双电层对含液细填充床冷冻脱水的影响
- 批准号:
17560177 - 财政年份:2005
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Effect on life style to Helicobacter pylori infection and/or chronic atrophic gastritis in the tropics
热带地区生活方式对幽门螺杆菌感染和/或慢性萎缩性胃炎的影响
- 批准号:
17590518 - 财政年份:2005
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Control of Microwave Heating in Rectangular Waveguide and Rectangular Cavity
矩形波导和矩形腔内微波加热的控制
- 批准号:
15560176 - 财政年份:2003
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
RUI: Development of Fast Methods for Solving the Boltzmann Equation through Reduced Order Models, Machine Learning, and Optimal Transport
RUI:开发通过降阶模型、机器学习和最优传输求解玻尔兹曼方程的快速方法
- 批准号:
2111612 - 财政年份:2021
- 资助金额:
$ 1.92万 - 项目类别:
Standard Grant
CAREER: Hilberts Sixth Problem in the Boltzmann equation
职业生涯:玻尔兹曼方程中的希尔伯特第六个问题
- 批准号:
2047681 - 财政年份:2021
- 资助金额:
$ 1.92万 - 项目类别:
Continuing Grant
Electron heating in capacitive RF plasmas based on moments of the Boltzmann equation: From fundamental understanding to predictive control
基于玻尔兹曼方程矩的电容式射频等离子体中的电子加热:从基本理解到预测控制
- 批准号:
428942393 - 财政年份:2019
- 资助金额:
$ 1.92万 - 项目类别:
Research Grants
CDS&E: DEterministic Evaluation of Kinetic Boltzmann equation with Spectral H/p/v Accuracy (DEEKSHA)
CDS
- 批准号:
1854829 - 财政年份:2019
- 资助金额:
$ 1.92万 - 项目类别:
Standard Grant
Nonlinear microlocal analysis for the Boltzmann equation
玻尔兹曼方程的非线性微局域分析
- 批准号:
17K05318 - 财政年份:2017
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
RUI: Development of Fast Scalable Adaptive High Order Methods for Solving the Boltzmann Equation
RUI:开发用于求解玻尔兹曼方程的快速可扩展自适应高阶方法
- 批准号:
1620497 - 财政年份:2016
- 资助金额:
$ 1.92万 - 项目类别:
Standard Grant
Singularity Analysis of Solutions to the Boltzmann Equation near the Boundary
玻尔兹曼方程边界附近解的奇异性分析
- 批准号:
15K17572 - 财政年份:2015
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Study of multi-dimensional supernova explosions by 6D Boltzmann equation
利用6D玻尔兹曼方程研究多维超新星爆炸
- 批准号:
15K05093 - 财政年份:2015
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Highly efficient numerical solution of the Boltzmann equation for practical applications
玻尔兹曼方程的实际应用的高效数值求解
- 批准号:
1438530 - 财政年份:2014
- 资助金额:
$ 1.92万 - 项目类别:
Standard Grant
Maximum Entropy Closure of Boltzmann-Equation Moment-Hierarchy
玻尔兹曼方程矩层次的最大熵闭合
- 批准号:
1418903 - 财政年份:2014
- 资助金额:
$ 1.92万 - 项目类别:
Standard Grant














{{item.name}}会员




