Synthetic Research of Probability Theory
概率论综合研究
基本信息
- 批准号:11304003
- 负责人:
- 金额:$ 18.69万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (A)
- 财政年份:1999
- 资助国家:日本
- 起止时间:1999 至 2001
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research was accomplished by 25 members under strong helps from many researchers in probability theory and related fields. During three years of the research period, 27 meetings were organized and 21 researchers were invited from abroad. A lot of research products were obtained in broad area:1. Related to the basic theory in probability theory, extension of the inverse arcsine law to one dimensional diffusion processes, properties of Brownian motion/heat kernel/Green function on several spaces, Markov processes and Dirichlet form, infinite dimensional stochastic analysis, stationary phase method and asymptotic theory and others were discussed.2. As applications of probability theory, mathematical physics such as analysis of phase separating surface arising under phase transitions, derivation of free boundary problem, motion of interacting Brownian hard balls, scaling limit of percolation cluster, random matrix, stochastic processes on fractals, problem of risk sensitive stochastic control, ergodid theory especially law of large numbers for ψ-mixing random variables, numerical calculation for stochastic differential equations and nonlinear diffusion equations, asymptotic expansion and applications of Malliavin calculus in mathematical statistics, problems related to differential geometry like collapse of manifolds.Concrete explanations on each research result can be found in the booklet of the research report in details. As is stated above, under the project of this research, many foreign researchers were invited and it was very fruitful and extremely important for the development of the probability theory in Japan in future.
本研究由25名成员在众多概率论及相关领域研究人员的大力帮助下完成。在三年的研究期间,组织了27次会议,邀请了21名国外研究人员。在广泛的领域取得了大量的研究成果:1.结合概率论中的基本理论,讨论了反正弦律在一维扩散过程中的推广,几种空间上布朗运动/热核/绿色函数的性质,马尔可夫过程与Dirichlet形式,无穷维随机分析,稳相方法与渐近理论等.作为概率论的应用,数学物理如相变下的相分离面分析,自由边界问题的推导,相互作用的布朗硬球的运动,渗流集团的标度极限,随机矩阵,分形上的随机过程,风险敏感随机控制问题,遍历理论特别是混合随机变量的大数定律,随机微分方程和非线性扩散方程的数值计算,Malliavin微积分在数理统计中的渐近展开和应用,微分几何的相关问题,如流形的坍缩,每一项研究成果的具体解释都可以在研究报告的小册子中找到。如上所述,在这项研究的项目下,许多外国研究人员被邀请,这是非常富有成效的,对日本概率论的发展非常重要。
项目成果
期刊论文数量(92)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
T.Hara: "The scaling limit of the incipient infinite cluster in high-dimensional percolation.II.Integrated super-Brownian excursion."J.Math.Phys.. 41. 1244-1293 (2000)
T.Hara:“高维渗透中初始无限星团的标度极限。II.积分超布朗偏移。”J.Math.Phys.. 41. 1244-1293 (2000)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y.Ogura(+富崎松代): "Superposition of diffusion processes-Feller Property-."Trends in Probability and related analysis.. 113-128 (1999)
Y.Ogura(+Matsuyo Tomizaki):“扩散过程的叠加 - Feller Property -”。概率趋势和相关分析.. 113-128 (1999)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
I.Shigekawa: "The domain of a generator and the intertwining property."Stochastics in Finite and Infinite Dimensions,. 401-410 (2000)
I.Shigekawa:“生成器的域和交织的属性。”有限和无限维度中的随机变量。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
N.Yoshida: "Application of log-Sobolev inequalitv to the stochastic dynamics of unbounded spin systems on the lattice."J. Funct.Anal.. 173. 74-102 (2000)
N.Yoshida:“对数索博列夫不等式在晶格上无界自旋系统的随机动力学中的应用。”J.
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
FUNAKI Tadahisa其他文献
Stochastic mass-conserving Allen-Cahn equation
随机质量守恒 Allen-Cahn 方程
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Lanjakornsiripan Darin;Pior Baek-Jun;Kawaguchi Daichi;Furutachi Shohei;Tahara Tomoaki;Katsuyama Yu;Suzuki Yutaka;Fukazawa Yugo;Gotoh Yukiko;大山修一;FUNAKI Tadahisa - 通讯作者:
FUNAKI Tadahisa
The both-end readout system of the K0TO CsI calorimeter
K0TO CsI量热仪两端读数系统
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Hashimoto;S.; Iwamoto;T.; Kurachi;D.; Kayahara;E.; Yamago;S.;FUNAKI Tadahisa;Nobuhiro Hara - 通讯作者:
Nobuhiro Hara
Large deviation for lozenge tiling dynamics
菱形平铺动力学偏差较大
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Hashimoto;S.; Iwamoto;T.; Kurachi;D.; Kayahara;E.; Yamago;S.;FUNAKI Tadahisa - 通讯作者:
FUNAKI Tadahisa
「持続可能な発展への支援―サヘルの緑化への挑戦」帝国書院編集部(編)『社会科 中学生の地理:世界の姿と日本の国土』
《支持可持续发展:绿化萨赫勒的挑战》帝国书院编辑部(主编)《社会研究:初中生地理:世界与日本国土》
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Ito S;Takao M;Fukutake T;Hatsuta H;Funabe S;Ito N;Shimoe Y;Niki T;Nakano I;Fukayama M;Murayama S;FUNAKI Tadahisa;Kohei Iwaki;篠原智史;大山修一 - 通讯作者:
大山修一
Scaling limits for random Fields in two media
两种媒体中随机场的缩放限制
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Ohta K.;Aoyama E.;Ahmad SAI;Ito N.;Anam MB;Kubota S. and Takigawa M;大山修一;FUNAKI Tadahisa - 通讯作者:
FUNAKI Tadahisa
FUNAKI Tadahisa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('FUNAKI Tadahisa', 18)}}的其他基金
Stochastic analysis on large scale interacting systems and its development
大规模交互系统的随机分析及其发展
- 批准号:
26287014 - 财政年份:2014
- 资助金额:
$ 18.69万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Stochastic analysis on large scale interacting systems and its applications
大规模交互系统的随机分析及其应用
- 批准号:
22244007 - 财政年份:2010
- 资助金额:
$ 18.69万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Study on stochastic partial differential equations with singular coefficients
奇异系数随机偏微分方程的研究
- 批准号:
21654021 - 财政年份:2009
- 资助金额:
$ 18.69万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Stochastic analysis on large scale interacting systems
大规模交互系统的随机分析
- 批准号:
18204007 - 财政年份:2006
- 资助金额:
$ 18.69万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Probabilistic Research of Large Scale Interacting Systems
大规模交互系统的概率研究
- 批准号:
14340029 - 财政年份:2002
- 资助金额:
$ 18.69万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Research of the hydrodynamic limit by probabilistic methods
概率方法研究水动力极限
- 批准号:
08454036 - 财政年份:1996
- 资助金额:
$ 18.69万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似海外基金
Spectral theory of Schrodinger forms and Stochastic analysis for weighted Markov processes
薛定谔形式的谱论和加权马尔可夫过程的随机分析
- 批准号:
23K03152 - 财政年份:2023
- 资助金额:
$ 18.69万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Potential theoretic approach to quasi-stationary phenomena of Markov processes
马尔可夫过程准平稳现象的潜在理论方法
- 批准号:
23KJ0236 - 财政年份:2023
- 资助金额:
$ 18.69万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Symmetric Markov processes: sample path analysis and functional analytic properties
对称马尔可夫过程:样本路径分析和功能分析属性
- 批准号:
23H01076 - 财政年份:2023
- 资助金额:
$ 18.69万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Analysis on metric measure spaces by optimal transport theory and Markov processes
最优输运理论和马尔可夫过程对度量测度空间的分析
- 批准号:
22H04942 - 财政年份:2022
- 资助金额:
$ 18.69万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
Long-time behaviour and fluctuations of Markov processes
马尔可夫过程的长期行为和波动
- 批准号:
RGPIN-2020-07239 - 财政年份:2022
- 资助金额:
$ 18.69万 - 项目类别:
Discovery Grants Program - Individual
Models of gene regulation using piecewise deterministic Markov processes
使用分段确定性马尔可夫过程的基因调控模型
- 批准号:
563400-2021 - 财政年份:2021
- 资助金额:
$ 18.69万 - 项目类别:
University Undergraduate Student Research Awards
Long-time behaviour and fluctuations of Markov processes
马尔可夫过程的长期行为和波动
- 批准号:
RGPIN-2020-07239 - 财政年份:2021
- 资助金额:
$ 18.69万 - 项目类别:
Discovery Grants Program - Individual
Markov processes and applications
马尔可夫过程和应用
- 批准号:
RGPIN-2016-06512 - 财政年份:2021
- 资助金额:
$ 18.69万 - 项目类别:
Discovery Grants Program - Individual
Problems in self-similar Markov processes
自相似马尔可夫过程中的问题
- 批准号:
2436441 - 财政年份:2020
- 资助金额:
$ 18.69万 - 项目类别:
Studentship
Boundary crossing problems for one-dimensional Markov processes to moving boundaries
一维马尔可夫过程移动边界的边界交叉问题
- 批准号:
2443857 - 财政年份:2020
- 资助金额:
$ 18.69万 - 项目类别:
Studentship














{{item.name}}会员




