Probabilistic Research of Large Scale Interacting Systems
大规模交互系统的概率研究
基本信息
- 批准号:14340029
- 负责人:
- 金额:$ 8.96万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2002
- 资助国家:日本
- 起止时间:2002 至 2005
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The large scale interacting systems generically mean mathematical models which are introduced to explain and understand physical phenomena at macroscopic level from microscopic one. Such systems exhibit very complicated feature in general. The purpose of this research is, unifying the viewpoints of stochastic analysis and theory of nonlinear partial differential equations, to study these models from several aspects deeply. To achieve the goal, in the first year 2002 of this research, an international symposium "Stochastic Analysis on Large Scale Interacting Systems" was organized. This played an important role to find the direction of the research.The objects of the research were expansive and of wide range. Let us state some of them concretely : lattice interface model, derivation-of free boundary, problem, large deviation, quasi-Winterbottom shape, phase structure and phase separation curve in Widom-Rowlinson model, interacting Brownian particles, random matrices, parabolic Anderson model, polymers in random media, non-crossing random walks, epidemic model and phase coexistence, evolutional singular limit with pinning, combustion model and partial differential equation with singular term, two-phase obstacle model, stochastic partial differential equations with singular term like delta-functions, integration by parts formula for restricted Wiener measure, Wiener integrals for Bessel processes.As research results based on effective cooperation of investigators in the group, we state : derivation of differential equations with singularities, like evolutionary variational inequality and free boundary problem, starting from interface model or two component system, finding similarity in interacting random walks or polymer models with interface model, study of interacting Brownian particles from several different aspects, studying the behavior of phase separation curves and others.
大尺度相互作用系统一般是指从微观层次解释和理解物理现象的数学模型。这样的系统通常表现出非常复杂的特征。本文的研究目的是结合随机分析和非线性偏微分方程理论的观点,从多个方面对这些模型进行深入的研究。为了实现这一目标,在本研究的第一年,2002年,国际研讨会“随机分析大规模相互作用系统”组织。这对寻找研究方向起到了重要作用。让我们具体说明其中的一些:晶格界面模型,自由边界的推导,问题,大偏差,Widom-Rowlinson模型中的拟Winterbottom形状,相结构和相分离曲线,相互作用布朗粒子,随机矩阵,抛物安德森模型,随机介质中的聚合物,非交叉随机游动,传染病模型和相共存,钉扎演化奇异极限,燃烧模型和带奇异项的偏微分方程、两相障碍物模型、带奇异项的随机偏微分方程(如δ函数)、限制Wiener测度的分部积分公式、Bessel过程的Wiener积分。作为研究小组中研究人员有效合作的研究成果,我们陈述:从界面模型或两组分体系出发,寻找相互作用随机游动或聚合物模型与界面模型的相似性,从几个不同的方面研究相互作用布朗粒子,研究相分离曲线的行为等。
项目成果
期刊论文数量(114)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Infinite systems of non-colliding Brownian particles.
非碰撞布朗粒子的无限系统。
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:N.Konno;N.Masuda;Norio Konno;Makoto Katori
- 通讯作者:Makoto Katori
Probabilistic analysis of directed polymers in a random environment: a review
- DOI:10.2969/aspm/03910115
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:F. Comets;T. Shiga;N. Yoshida
- 通讯作者:F. Comets;T. Shiga;N. Yoshida
Global Solutions of an Obstacle-Problem-Like Equation with Two Phases
- DOI:10.1007/s00605-004-0235-6
- 发表时间:2004-05
- 期刊:
- 影响因子:0
- 作者:H. Shahgholian;N. Uraltseva;G. Weiss
- 通讯作者:H. Shahgholian;N. Uraltseva;G. Weiss
Probabilistic analysis of directed polymers in random environment : a review.
随机环境中定向聚合物的概率分析:综述。
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:F.Comets;(T.Shiga;N.Yoshida)
- 通讯作者:N.Yoshida)
Some results on the phase structure of the two-dimensional Wiclom-Rowlinson model.
关于二维 Wiclom-Rowlinson 模型相结构的一些结果。
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Fushiki;T.;Komaki;F.;Aihara;K.;Y.Higuchi
- 通讯作者:Y.Higuchi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
FUNAKI Tadahisa其他文献
Stochastic mass-conserving Allen-Cahn equation
随机质量守恒 Allen-Cahn 方程
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Lanjakornsiripan Darin;Pior Baek-Jun;Kawaguchi Daichi;Furutachi Shohei;Tahara Tomoaki;Katsuyama Yu;Suzuki Yutaka;Fukazawa Yugo;Gotoh Yukiko;大山修一;FUNAKI Tadahisa - 通讯作者:
FUNAKI Tadahisa
The both-end readout system of the K0TO CsI calorimeter
K0TO CsI量热仪两端读数系统
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Hashimoto;S.; Iwamoto;T.; Kurachi;D.; Kayahara;E.; Yamago;S.;FUNAKI Tadahisa;Nobuhiro Hara - 通讯作者:
Nobuhiro Hara
Large deviation for lozenge tiling dynamics
菱形平铺动力学偏差较大
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Hashimoto;S.; Iwamoto;T.; Kurachi;D.; Kayahara;E.; Yamago;S.;FUNAKI Tadahisa - 通讯作者:
FUNAKI Tadahisa
「持続可能な発展への支援―サヘルの緑化への挑戦」帝国書院編集部(編)『社会科 中学生の地理:世界の姿と日本の国土』
《支持可持续发展:绿化萨赫勒的挑战》帝国书院编辑部(主编)《社会研究:初中生地理:世界与日本国土》
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Ito S;Takao M;Fukutake T;Hatsuta H;Funabe S;Ito N;Shimoe Y;Niki T;Nakano I;Fukayama M;Murayama S;FUNAKI Tadahisa;Kohei Iwaki;篠原智史;大山修一 - 通讯作者:
大山修一
Scaling limits for random Fields in two media
两种媒体中随机场的缩放限制
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Ohta K.;Aoyama E.;Ahmad SAI;Ito N.;Anam MB;Kubota S. and Takigawa M;大山修一;FUNAKI Tadahisa - 通讯作者:
FUNAKI Tadahisa
FUNAKI Tadahisa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('FUNAKI Tadahisa', 18)}}的其他基金
Stochastic analysis on large scale interacting systems and its development
大规模交互系统的随机分析及其发展
- 批准号:
26287014 - 财政年份:2014
- 资助金额:
$ 8.96万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Stochastic analysis on large scale interacting systems and its applications
大规模交互系统的随机分析及其应用
- 批准号:
22244007 - 财政年份:2010
- 资助金额:
$ 8.96万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Study on stochastic partial differential equations with singular coefficients
奇异系数随机偏微分方程的研究
- 批准号:
21654021 - 财政年份:2009
- 资助金额:
$ 8.96万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Stochastic analysis on large scale interacting systems
大规模交互系统的随机分析
- 批准号:
18204007 - 财政年份:2006
- 资助金额:
$ 8.96万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Synthetic Research of Probability Theory
概率论综合研究
- 批准号:
11304003 - 财政年份:1999
- 资助金额:
$ 8.96万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Research of the hydrodynamic limit by probabilistic methods
概率方法研究水动力极限
- 批准号:
08454036 - 财政年份:1996
- 资助金额:
$ 8.96万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似海外基金
Analysis on stationary non-equilibrium states via large deviation principle for hydrodynamic limit
基于流体动力极限大偏差原理的稳态非平衡态分析
- 批准号:
16H07041 - 财政年份:2016
- 资助金额:
$ 8.96万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Hydrodynamic limit for multi-species exclusion processes
多物种排除过程的流体动力学极限
- 批准号:
23540132 - 财政年份:2011
- 资助金额:
$ 8.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies on hydrodynamic limit of lattice gas
晶格气体流体力学极限研究
- 批准号:
18740052 - 财政年份:2006
- 资助金额:
$ 8.96万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
PROBLEMS ON THE HYDRODYNAMIC LIMIT AND RELATED TOPICS
流体力学极限问题及相关主题
- 批准号:
15540109 - 财政年份:2003
- 资助金额:
$ 8.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Large deviationsfor hydrodynamic limit; measure-valued process and two-parameter poisson-dirichlet distribution
水动力极限偏差大;
- 批准号:
155745-1998 - 财政年份:2001
- 资助金额:
$ 8.96万 - 项目类别:
Discovery Grants Program - Individual
Large deviationsfor hydrodynamic limit; measure-valued process and two-parameter poisson-dirichlet distribution
水动力极限偏差大;
- 批准号:
155745-1998 - 财政年份:2000
- 资助金额:
$ 8.96万 - 项目类别:
Discovery Grants Program - Individual
Large deviationsfor hydrodynamic limit; measure-valued process and two-parameter poisson-dirichlet distribution
水动力极限偏差大;
- 批准号:
155745-1998 - 财政年份:1999
- 资助金额:
$ 8.96万 - 项目类别:
Discovery Grants Program - Individual
Large deviationsfor hydrodynamic limit; measure-valued process and two-parameter poisson-dirichlet distribution
水动力极限偏差大;
- 批准号:
155745-1998 - 财政年份:1998
- 资助金额:
$ 8.96万 - 项目类别:
Discovery Grants Program - Individual
Analysis of semi-open networks and hydrodynamic limit of queueing networks
半开放网络分析及排队网络水动力极限
- 批准号:
42564-1995 - 财政年份:1998
- 资助金额:
$ 8.96万 - 项目类别:
Discovery Grants Program - Individual
Analysis of semi-open networks and hydrodynamic limit of queueing networks
半开放网络分析及排队网络水动力极限
- 批准号:
42564-1995 - 财政年份:1997
- 资助金额:
$ 8.96万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




