Research on clarifying algebraic structure of rings using each representation theory of algebras, group rings and Lie rings.
利用代数、群环和李环各自的表示论阐明环的代数结构的研究。
基本信息
- 批准号:11640019
- 负责人:
- 金额:$ 2.05万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1999
- 资助国家:日本
- 起止时间:1999 至 2000
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
[1999]In Duality theory Sato studied the principle of Duality which exists in Commutative noetherian ring and analyzed it in the view point of general non-commutative ring theory. By using non-commutative ring theory method, he succeeded to find the essential principle that Duality exists. which was difficult to find in the case of commutative ring since several facts were mixed to be held one fact. Also he showed theses facts hold also in the case of non-commutative rings under some conditions.Miyamoto studied about Association scheme which is notified recently and he decided these which has elements up to 22.Iwanaga generalized Wakamatsu theorem, which is famous theorem in the field of the representation theory of algebras, with respect to Tilting algebra.Kurihara advised on researched through discussion about the above studies.[2000]Sato studied global dimension of typical case of quasi-hereditary rings which had been introduced from the representation theory of Lie algebras. For the ring you make the endomorphism ring of direct sum of all modules of the ring modulo the power of its Jacobson radical, then this ring becomes quasi-hereditary. He completely find the structure of minimal projective resolution of simple modules of this endomorphism ring and using this properties, he created the way of construction of resolution of these modules. Also he proved the global dimension does not exceed the number of simple modules.Miyamoto found the construction of groups which includes normalizer of permutation groups by using association scheme noticed as generalization of group rings.Iwanaga continued the study of the generalization of Wakamatsu theorem.Kurahara gave advises in the stand point of view of analysis through discussions.
[1999]在对偶理论中,佐藤研究了交换Notherian环中存在的对偶原理,并从一般非交换环论的角度对其进行了分析。他运用非对易环论的方法,成功地找到了对偶存在的基本原理。这在交换环的情况下很难找到,因为几个事实混合在一起被认为是一个事实。他还证明了这些事实在某些条件下也适用于非交换环。宫本研究了最近公布的结合方案,他确定了元素不超过22的结合方案。关于倾斜代数,Iwanaga推广了Wakamatsu定理,这是代数表示论领域中著名的定理。栗原建议通过对上述研究的讨论来研究。[2000]Sato研究了从李代数表示理论引入的拟遗传环的典型情况的整体维度。对于环,使环的所有模的直和的自同态环以其Jacobson根的幂为模,则这个环成为拟遗传的。他完全找到了这个自同态环的单模的极小射影分解的结构,并利用这一性质,建立了这些模的分解的构造方法。他还证明了整体维度不超过单模的个数。宫本利用作为群环推广的结合方案发现了包含置换群的正规化子的群的构造。岩原继续研究了Wakamatsu定理的推广。栗原通过讨论从分析的角度给出了建议。
项目成果
期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Izumi Miyamoto Akira Hanaki: "Classification of primitive association scheme of order up to 22"Kyushu J.Math.. 54. 81-86 (2000)
Izumi Miyamoto Akira Hanaki:“22阶以下的原始关联方案的分类”Kyushu J.Math.. 54. 81-86 (2000)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Masahisa Sato: "Some kind of Duality"Proc.of the 4th Symp.on Ring theory and Representation theory Birkhauser, Boston. 355-364 (2000)
Masahisa Sato:“某种对偶性”Proc.of the 4th Symp.on 环理论和表示理论 Birkhauser,波士顿。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Masahisa Sato: "Some notes on reflexive modules, Mem.Liberal Arts and Educ."Yamanashi University. 47. *-17 (1997)
佐藤正久:“关于反射模块的一些笔记,Mem.Liberal Arts and Educ。”山梨大学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Izumi Miyamoto: "Computing normalizer of permutation groups effective using isomorhisms of association schems"Symp.on Symbolic and Algebraic Computation. 220-224 (2000)
Izumi Miyamoto:“使用关联模式的同构有效地计算排列群的标准化器”Symp.on 符号和代数计算。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Yasuo Iwanaga: "Notes on Wakamatsu's generalized tilting modules"信州大学教育学部紀要. 99. 155-166 (2000)
Yasuo Iwanaga:“若松广义倾斜模块的注释”信州大学教育学部公告 99. 155-166 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SATO Masahisa其他文献
SATO Masahisa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SATO Masahisa', 18)}}的其他基金
The study of the common learning abilities of students across subject -Practical check by big data analysis
跨学科学生共同学习能力研究——大数据分析的实践检验
- 批准号:
16K01106 - 财政年份:2016
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research of Algebras relating to Cartan Problem by using methods of Representation Theory as an application of Algebraic Geometry
代数几何应用表示论方法研究嘉当问题的代数
- 批准号:
19540019 - 财政年份:2007
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of algebras relating to quadratic form by using representation theory and homological algebras
利用表示论和同调代数研究与二次型有关的代数
- 批准号:
16540019 - 财政年份:2004
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on elucidation of Algebratc Structure of rings applying Representation Theories of Finite dimerstcrra algebhas, Griupalgerhras and Lie Alberas
应用有限二聚代数、Griupalgerhras和Lie Alberas表示论阐明环代数结构的研究
- 批准号:
09640022 - 财政年份:1997
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Representation Theory Meets Computational Algebra and Complexity Theory
表示论遇见计算代数和复杂性理论
- 批准号:
2302375 - 财政年份:2023
- 资助金额:
$ 2.05万 - 项目类别:
Standard Grant
Combinatorial Representation Theory: Discovering the Interfaces of Algebra with Geometry and Topology
组合表示理论:发现代数与几何和拓扑的接口
- 批准号:
EP/W007509/1 - 财政年份:2022
- 资助金额:
$ 2.05万 - 项目类别:
Research Grant
Women in Noncommutative Algebra and Representation Theory Workshop 3
非交换代数和表示论中的女性研讨会 3
- 批准号:
2203108 - 财政年份:2022
- 资助金额:
$ 2.05万 - 项目类别:
Standard Grant
Canada-Mexico-USA Conference in Representation Theory, Noncommutative Algebra, and Categorification
加拿大-墨西哥-美国表示论、非交换代数和分类会议
- 批准号:
2205730 - 财政年份:2022
- 资助金额:
$ 2.05万 - 项目类别:
Standard Grant
Quantum algebra: from representation theory to integrable systems
量子代数:从表示论到可积系统
- 批准号:
2744813 - 财政年份:2022
- 资助金额:
$ 2.05万 - 项目类别:
Studentship
Geometric Representation Theory: Interface of Algebra, Geometry and Topology.
几何表示理论:代数、几何和拓扑的接口。
- 批准号:
2596547 - 财政年份:2021
- 资助金额:
$ 2.05万 - 项目类别:
Studentship
Local Algebra and Local Representation Theory
局部代数和局部表示论
- 批准号:
2001368 - 财政年份:2020
- 资助金额:
$ 2.05万 - 项目类别:
Continuing Grant
Abstract algebra and representation theory
抽象代数和表示论
- 批准号:
2438514 - 财政年份:2020
- 资助金额:
$ 2.05万 - 项目类别:
Studentship
Combinatorics and Asymptotics of Structure Constants from Representation Theory and Algebra
来自表示论和代数的结构常数的组合学和渐近学
- 批准号:
1939717 - 财政年份:2019
- 资助金额:
$ 2.05万 - 项目类别:
Continuing Grant
Elliptic representation theory: the study of symmetries across geometry, algebra and physics
椭圆表示理论:跨几何、代数和物理学的对称性研究
- 批准号:
DE190101222 - 财政年份:2019
- 资助金额:
$ 2.05万 - 项目类别:
Discovery Early Career Researcher Award