Local Algebra and Local Representation Theory

局部代数和局部表示论

基本信息

  • 批准号:
    2001368
  • 负责人:
  • 金额:
    $ 55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

One of the myriad functions of Mathematics is that it provides language to formulate, and tools to solve, equations that describe the physical world. Often the equations that one encounters are algebraic in nature, like those describing lines, circles, parabolas and the like, in contrast with, say, equations involving the trigonometric functions, or logarithms, or derivatives. Typically, the equations have infinitely many solutions---think about the equation defining a circle---and it is usually not possible to write down a complete list of solutions. Rather, the objective is to find ways to study the structure of the collection of the solution set, which is called a variety. A fruitful approach has been to consider the (algebraic) functions on the variety. These functions form a mathematical structure called a commutative ring, and my research has been dedicated to understanding these structures; not in the abstract, but in their various manifestations, which are galore, they arise in quite diverse contexts across mathematics and physics. Mathematics has also been remarkably successful in describing and studying phenomenon related to symmetry. This leads to another mathematical structure called a group. Intriguingly, in certain contexts, there is a way to attach a commutative ring---and a variety---to a group and in the past few years various researchers, including the PI, have been able to solve problems related to groups using tools that had been developed to study varieties. A part of the current project deals with these aspects.Two major themes weave through this project. One is the study of invariants of finite free complexes over commutative noetherian local rings; the second is the modular representation theory of finite groups and group schemes. The former too is connected to groups via certain conjectures in the theory of transformation groups. These conjectures---due to Adem, Avramov, Browder, Buchweitz, Carlsson, Swan, Halperin and others---postulated lower bounds on the length of the homology modules, and on the total rank, of such complexes, when the homology has nonzero finite length. Recently the PI and Mark Walker found counterexamples for many of these conjectures. One set of problems outlined in this project are aimed at discovering and establishing the ``correct" bounds for these invariants. Another set of projects seek to probe the structure of the stable module category of representations of a finite group, or finite group scheme, over a field of positive characteristic. The focus is on ``local strata" and various finiteness conditions for modules in this strata; in particular, on dualizability and cohomological finiteness. The multiplicative structure of Hochschild cohomology of commutative algebras is a third main topic of this proposal. The goal here is to characterize locally complete intersection algebras in terms of their Hochschild cohomology. This award will support the training of students in a very relevant area of mathematics that has applications to several fields.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数学的众多功能之一是,它提供了表述描述物理世界的方程的语言和求解方程的工具。通常,人们遇到的方程本质上是代数的,比如描述直线、圆、抛物线等的方程,与之形成对比的是,涉及三角函数、对数或导数的方程。通常,方程有无限多个解——想想定义一个圆的方程——通常不可能写出一个完整的解列表。相反,目标是找到方法来研究解集集合的结构,这被称为多样性。一个富有成效的方法是考虑(代数)函数上的变化。这些函数形成了一个叫做交换环的数学结构,我的研究一直致力于理解这些结构;不是抽象的,而是各种各样的表现形式,它们在数学和物理学的不同背景中出现。数学在描述和研究与对称有关的现象方面也取得了显著的成功。这就引出了另一种叫做群的数学结构。有趣的是,在某些情况下,有一种方法可以将交换环和一个变种附加到一个群上,在过去的几年里,包括PI在内的各种研究人员已经能够使用研究变种的工具来解决与群相关的问题。当前项目的一部分涉及这些方面。两个主要的主题贯穿了这个项目。一是研究交换诺瑟局部环上有限自由复的不变量;第二部分是有限群和群格式的模表示理论。前者也通过变换群理论中的某些猜想与群联系在一起。这些猜想——由Adem、Avramov、Browder、Buchweitz、Carlsson、Swan、Halperin等人提出——假设了当同调具有非零有限长度时,这些配合物模的长度下界和总秩下界。最近,PI和马克·沃克(Mark Walker)发现了许多这些猜想的反例。本项目概述的一组问题旨在发现和建立这些不变量的“正确”界限。另一组项目试图探索有限群或有限群方案在正特征域上表示的稳定模类别的结构。重点研究了“局部地层”和该地层中各种模块的有限条件;特别是关于对偶性和上同调有限性。交换代数的Hochschild上同调的乘法结构是本提案的第三个主题。这里的目标是用它们的Hochschild上同调来描述局部完全交代数。该奖项将支持学生在一个非常相关的数学领域进行培训,该领域可以应用于多个领域。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cohomological supports of tensor products of modules over commutative rings
交换环上模张量积的上同调支持
  • DOI:
    10.1007/s40687-022-00321-7
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.2
  • 作者:
    Iyengar, Srikanth B.;Pollitz, Josh;Sanders, William T.
  • 通讯作者:
    Sanders, William T.
Rigidity properties of the cotangent complex
  • DOI:
    10.1090/jams/1000
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Benjamin Briggs;S. Iyengar
  • 通讯作者:
    Benjamin Briggs;S. Iyengar
The Nakayama functor and its completion for Gorenstein algebras
Maximal Cohen-Macaulay complexes and their uses: A partial survey
最大科恩-麦考利复合体及其用途:部分调查
Rank varieties and ?-points for elementary supergroup schemes
基本超群方案的排序变体和 ? 点
  • DOI:
    10.1090/btran/74
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Benson, Dave;Iyengar, Srikanth;Krause, Henning;Pevtsova, Julia
  • 通讯作者:
    Pevtsova, Julia
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Srikanth Iyengar其他文献

Fully Automated Agatston Score Calculation From Electrocardiography-Gated Cardiac Computed Tomography Using Deep Learning and Multi-Organ Segmentation: A Validation Study.
使用深度学习和多器官分割从心电图门控心脏计算机断层扫描全自动计算 Agatston 评分:一项验证研究。
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Ashish Gautam;Prashant Raghav;Vijay Subramaniam;Sunil Kumar;Sudeep Kumar;Dharmendra Jain;Ashish Verma;Parminder Singh;Manphoul Singhal;Vikash Gupta;S. Rathore;Srikanth Iyengar;Sudhir Rathore
  • 通讯作者:
    Sudhir Rathore
Class and rank of differential modules THANKSREF="*" ID="*"Research partly supported by NSF grant DMS 0201904 (L.L.A.), NSERC grant 3-642-114-80 (R.O.B.), and NSF grant DMS 0442242 (S.I.).
  • DOI:
    10.1007/s00222-007-0041-6
  • 发表时间:
    2007-03-07
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Luchezar L. Avramov;Ragnar-Olaf Buchweitz;Srikanth Iyengar
  • 通讯作者:
    Srikanth Iyengar

Srikanth Iyengar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Srikanth Iyengar', 18)}}的其他基金

Homological Aspects of Commutative Algebra and Applications to Modular Representation Theory
交换代数的同调方面及其在模表示理论中的应用
  • 批准号:
    1700985
  • 财政年份:
    2017
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
Conference Proposal: Geometric and topological aspects of the representation theory of finite groups
会议提案:有限群表示论的几何和拓扑方面
  • 批准号:
    1624050
  • 财政年份:
    2016
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Conference Proposal: Interactions between Representation Theory, Algebraic Topology and Commutative Algebra
会议提案:表示论、代数拓扑学和交换代数之间的相互作用
  • 批准号:
    1501399
  • 财政年份:
    2015
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Commutative algebra: homological and homotopical aspects
交换代数:同调和同伦方面
  • 批准号:
    1503044
  • 财政年份:
    2014
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
Pan American Advanced Studies Institute: Commutative Algebra and Its Interactions with Algebraic Geometry, Representation Theory, and Physics; Guanajuato, Mexico; May 14-25, 2012
泛美高等研究院:交换代数及其与代数几何、表示论和物理学的相互作用;
  • 批准号:
    1123059
  • 财政年份:
    2012
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Commutative algebra: homological and homotopical aspects
交换代数:同调和同伦方面
  • 批准号:
    1201889
  • 财政年份:
    2012
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
Derived categories of complete intersections and Hochschild cohomology
完全交集和 Hochschild 上同调的派生范畴
  • 批准号:
    0903493
  • 财政年份:
    2009
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
Derived invariants of commutative rings
交换环的导出不变量
  • 批准号:
    0602498
  • 财政年份:
    2006
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
Homological Invariants of Modules Over Commutative Rings
交换环上模的同调不变量
  • 批准号:
    0442242
  • 财政年份:
    2004
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Homological Invariants of Modules Over Commutative Rings
交换环上模的同调不变量
  • 批准号:
    0302892
  • 财政年份:
    2003
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant

相似海外基金

Representation Theory Meets Computational Algebra and Complexity Theory
表示论遇见计算代数和复杂性理论
  • 批准号:
    2302375
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Combinatorial Representation Theory: Discovering the Interfaces of Algebra with Geometry and Topology
组合表示理论:发现代数与几何和拓扑的接口
  • 批准号:
    EP/W007509/1
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
    Research Grant
Women in Noncommutative Algebra and Representation Theory Workshop 3
非交换代数和表示论中的女性研讨会 3
  • 批准号:
    2203108
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Canada-Mexico-USA Conference in Representation Theory, Noncommutative Algebra, and Categorification
加拿大-墨西哥-美国表示论、非交换代数和分类会议
  • 批准号:
    2205730
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Quantum algebra: from representation theory to integrable systems
量子代数:从表示论到可积系统
  • 批准号:
    2744813
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
    Studentship
Geometric Representation Theory: Interface of Algebra, Geometry and Topology.
几何表示理论:代数、几何和拓扑的接口。
  • 批准号:
    2596547
  • 财政年份:
    2021
  • 资助金额:
    $ 55万
  • 项目类别:
    Studentship
Abstract algebra and representation theory
抽象代数和表示论
  • 批准号:
    2438514
  • 财政年份:
    2020
  • 资助金额:
    $ 55万
  • 项目类别:
    Studentship
Combinatorics and Asymptotics of Structure Constants from Representation Theory and Algebra
来自表示论和代数的结构常数的组合学和渐近学
  • 批准号:
    1939717
  • 财政年份:
    2019
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
Elliptic representation theory: the study of symmetries across geometry, algebra and physics
椭圆表示理论:跨几何、代数和物理学的对称性研究
  • 批准号:
    DE190101222
  • 财政年份:
    2019
  • 资助金额:
    $ 55万
  • 项目类别:
    Discovery Early Career Researcher Award
Expanding representation in Noncommutative Algebra and Representation Theory: WINART2 Workshop
扩展非交换代数和表示论中的表示:WINART2 研讨会
  • 批准号:
    1900575
  • 财政年份:
    2019
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了