Mathematical Study of Critical Phenomena for Statistical Models in Probability
概率统计模型关键现象的数学研究
基本信息
- 批准号:11640104
- 负责人:
- 金额:$ 1.66万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1999
- 资助国家:日本
- 起止时间:1999 至 2000
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The main purpose of the research was to investigate critical behavior of certain stochastic geometric models that appear in probability theory and statistical mechanics. In particular, we investigated continuum (scaling) limits of incipient infinite clusters of the critical percolation model in high dimensions.We found that a reasonable continuum limit could be obtained for a cluster of size N, if we scale the space proportional to the fourth root of N.Moreover, we calculated the first and second moments of the limiting distributions, and identified them as the first and second moments of the integrated super-Brownian excursion (ISE). This strongly suggests that the continuum limit is in fact ISE.The method of proof uses the lace expansion, which has been used successfully in other contexts. To investigate the particular problem of this research, we calculated generating functions of cluster distributions, and applied Tauberian analysis.
研究的主要目的是探讨出现在概率论和统计力学中的某些随机几何模型的临界行为。特别地,我们研究了高维临界渗流模型初始无限团簇的连续(标度)极限.我们发现,对于一个大小为N的团簇,如果我们按N的四次方根比例标度空间,就可以得到一个合理的连续极限.此外,我们还计算了极限分布的一阶和二阶矩,并将它们识别为积分超布朗偏移(伊势)的一阶矩和二阶矩。这有力地表明,连续极限实际上是伊势。证明的方法使用花边扩展,这已成功地用于在其他情况下。为了探讨本研究的特殊问题,我们计算了集群分布的母函数,并应用Tauberian分析。
项目成果
期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Z.Li,Tokuzo Shiga and L.Yao: "A reversibility problem for the Fleming-Viot processes"Elect.Comm. in probab. 4. 71-82 (1999)
Z.Li、Tokuzo Shiga 和 L.Yao:“弗莱明-维奥过程的可逆性问题”Elect.Comm。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Takashi Hara and Gordon Slade: "The scaling limit of the incipient cluster in high-dimensional percolation.II.Integrated super-Brownian excursion"J. Math. Phys.,41巻3号 (2000). (印刷中).
Takashi Hara 和 Gordon Slade:“高维渗流中初始星团的标度极限。II. 积分超布朗偏移”J. Math.,第 41 卷,第 3 期(出版中)。 。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Takashi Hara and Gordon Slade: "The scaling limit of the incipient infinite cluster in high dimensional percolation. I.Critical exponents"J.Statist.Phys.. 99. 1075-1168 (2000)
Takashi Hara 和 Gordon Slade:“高维渗透中初始无限星团的标度极限。I.Critical exponents”J.Statist.Phys.. 99. 1075-1168 (2000)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Takashi Hara and Gordon Slade: "The scaling limit of the incipient cluster in high-dimensional percolation.I.Critical exponents"J. Statist. Phy. 印刷中.
Takashi Hara 和 Gordon Slade:“高维渗流中初期星团的缩放极限。I. 临界指数”J. Phy。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Z.Li,Tokuzo Shiga and L.Yao: "A reversibility problem for the Fleming-Viot processes"Elect.Comm.in probab. 4. 71-82 (1999)
Z.Li、Tokuzo Shiga 和 L.Yao:“弗莱明-维奥过程的可逆性问题”Elect.Comm.in 概率。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HARA Takashi其他文献
MODEL EXPERIMENT STUDY ON EFFECTIVENESS OF COUNTERMEASURES AGAINST BUMP OF ROAD EMBANKMENT SURFACE CAUSED BY EARTHQUAKE
地震路基面凸起对策有效性模型试验研究
- DOI:
10.5030/jcigsjournal.37.13 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
TATTA Naoki;SOGA Hiroyuki;KUSAKA Hirohiko;HARA Takashi - 通讯作者:
HARA Takashi
HARA Takashi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HARA Takashi', 18)}}的其他基金
Study on genetic control mechanism of excess water tolerance during germination focusing on antibacterial activity
以抗菌活性为核心的发芽过程耐过量水分遗传调控机制研究
- 批准号:
20K15507 - 财政年份:2020
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Study on photoperiod sensitivity and ecotype that contributes to improving and stabilizing buckwheat yield
有助于提高和稳定荞麦产量的光周期敏感性和生态型研究
- 批准号:
16K18642 - 财政年份:2016
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Study on Iwasawa theoretic phenomena appearing in non-commutative Galois deformations
非交换伽罗瓦变形中岩泽理论现象的研究
- 批准号:
26800014 - 财政年份:2014
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Ultimate strength and failure characteristics of R/C cylindrical shell under combined loading
复合载荷下R/C圆柱壳的极限强度及破坏特性
- 批准号:
22560580 - 财政年份:2010
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Renormalization Group Approach to Stochastic Geometric Models
随机几何模型的重正化群方法
- 批准号:
21654020 - 财政年份:2009
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Studies on inhibitory effect against mast cell function and anti-allergic property of GABA
GABA对肥大细胞功能的抑制作用及抗过敏作用的研究
- 批准号:
21780122 - 财政年份:2009
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Towards deeper understanding of renormalization group and lace expansion
更深入地理解重正化群和花边扩展
- 批准号:
16540102 - 财政年份:2004
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of critical phenomena by lace expansion and renormalization group
花边扩展和重正化群的临界现象研究
- 批准号:
13640112 - 财政年份:2001
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Experimental analysis of R/C cylindrical shell behavior under idealized boundary and loading conditions
理想边界和载荷条件下 R/C 圆柱壳行为的实验分析
- 批准号:
12650593 - 财政年份:2000
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Lace-expansion approach towards phase transitions, critical phenomena and constructive field theory
相变、临界现象和相长场论的花边展开方法
- 批准号:
23K03143 - 财政年份:2023
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
symmetry and integrability of ADE matrix model probing critical phenomena of supersymmetric gauge theory by symmetry and integrability
ADE 矩阵模型的对称性和可积性 通过对称性和可积性探讨超对称规范理论的关键现象
- 批准号:
23K03394 - 财政年份:2023
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Critical phenomena from black holes and the Keldysh Schwinger
黑洞和凯尔迪什施温格的临界现象
- 批准号:
2868785 - 财政年份:2023
- 资助金额:
$ 1.66万 - 项目类别:
Studentship
Critical phenomena of metal-insulator transition in disordered impurity systems: Effects of spin and compensation
无序杂质系统中金属-绝缘体转变的关键现象:自旋和补偿的影响
- 批准号:
22K03449 - 财政年份:2022
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Spectral Transitions and Critical Phenomena
光谱跃迁和临界现象
- 批准号:
2155211 - 财政年份:2022
- 资助金额:
$ 1.66万 - 项目类别:
Continuing Grant
Critical phenomena in human-environment systems
人类-环境系统中的关键现象
- 批准号:
RGPIN-2019-04245 - 财政年份:2022
- 资助金额:
$ 1.66万 - 项目类别:
Discovery Grants Program - Individual
Critical Phenomena in Coherent Structure Formation
相干结构形成的关键现象
- 批准号:
2205663 - 财政年份:2022
- 资助金额:
$ 1.66万 - 项目类别:
Standard Grant
Renormalisation group and critical phenomena
重正化群和临界现象
- 批准号:
RGPIN-2017-03748 - 财政年份:2021
- 资助金额:
$ 1.66万 - 项目类别:
Discovery Grants Program - Individual
Critical phenomena in human-environment systems
人类-环境系统中的关键现象
- 批准号:
RGPIN-2019-04245 - 财政年份:2021
- 资助金额:
$ 1.66万 - 项目类别:
Discovery Grants Program - Individual
Investigation of quantum dynamics of vortices and quantum critical phenomena in highly crystalline 2D superconductors
高结晶二维超导体中涡旋量子动力学和量子临界现象的研究
- 批准号:
21H01792 - 财政年份:2021
- 资助金额:
$ 1.66万 - 项目类别:
Grant-in-Aid for Scientific Research (B)