Study of critical phenomena by lace expansion and renormalization group
花边扩展和重正化群的临界现象研究
基本信息
- 批准号:13640112
- 负责人:
- 金额:$ 2.11万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2001
- 资助国家:日本
- 起止时间:2001 至 2003
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We have studied critical phenomena of stochastic geometric models (self-avoiding walk, percolation, lattice animals... ) in a mathematically rigorous manner, using renormalization group and lace expansion techniques. Our main results are as follows.1.Rigorous renormalization group analysis of hierarchical spin models. We have rigorously performed the renormalization group transformation for the hierarchical Ising model in four dimensions, and proved that its continuume limit it gaussian (i.e. "trivial"). Also we found a partial differential equation which is equivalent to the renormalization group transformation.2.Rigorous asymptotic estimates of the critical two-point functions for self-avoiding walk, percolation and lattice animals. We have shown that their asymptotic behavior is the same as that of the simple random walk, as long as the system dimension is sufficiently large.3.We have performed a renormalization group analysis of hierarchical weakly self-repelling walks in four dimensions. Our result proves the existence of the so called "logarithmic corrections" for the susceptibility.4.We are currently analyzing critical behavior of a kind of random cluster model, which interpolates percolation and lattice animals. Our goal is to determine its critical dimension.
我们已经研究了随机几何模型的临界现象(自避免行走,渗流,格子动物...)以数学上严格的方式,使用重整化群和蕾丝展开技术。我们的主要结果如下:1.等级自旋模型的严格重整化群分析。我们严格地进行了四维层次伊辛模型的重整化群变换,并证明了它的连续性限制高斯(即“平凡”)。我们还找到了一个与重整化群变换等价的偏微分方程。2.自避免行走、渗流和格点动物临界两点函数的严格渐近估计。我们证明了只要系统维数足够大,它们的渐近行为与简单随机游动的渐近行为相同。3.我们对四维分层弱自排斥游动进行了重整化群分析。我们的结果证明了“对数修正”的存在性。4.我们目前正在分析一类随机集团模型的临界行为,该模型是在渗流和格点动物的基础上建立的。我们的目标是确定其临界尺寸。
项目成果
期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
T.Hattori, T.Tsuda: "Renormalization group analysis of the self-avoiding paths on the d-dimensional Sierpinski Gasket"J.Statist.Phys.. 109. 39-66 (2002)
T.Hattori、T.Tsuda:“d 维 Sierpinski 垫片上自回避路径的重正化群分析”J.Statist.Phys.. 109. 39-66 (2002)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Takashi Hara, Tetsuya Hattori, Hiroshi Watanabe: "Thrviality of hierarchical Ising model in four dimensions"Commun.Math.Phys.. 220. 13-40 (2001)
Takashi Hara、Tetsuya Hattori、Hiroshi Watanabe:“四个维度的分层伊辛模型的有效性”Commun.Math.Phys.. 220. 13-40 (2001)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Takashi Hara, Remco van der Hofstad, Gordon Slade: "Critical two-point functions and the lace expansion for spread-out high-dimensional percolation and related models"Ann.Prob.. 31. 349-408 (2003)
Takashi Hara、Remco van der Hofstad、Gordon Slade:“临界两点函数和展开高维渗滤及相关模型的花边展开”Ann.Prob.. 31. 349-408 (2003)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Hattori, T.Tsuda: "Renormalization group analysis of the self-avoiding paths on the d-dimensional Sierpinski Gasket."J.Statist.Phys.. 109. 39-66 (2002)
T.Hattori、T.Tsuda:“d 维 Sierpinski 垫片上自回避路径的重正化群分析。”J.Statist.Phys.. 109. 39-66 (2002)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Takashi Hara, Tetsuya Hattori, Hiroshi Watanabe: "Triviality of hierarchical Ising model in four dimensions"Commun. Math. Phys.. 220. 13-40 (2001)
Takashi Hara、Tetsuya Hattori、Hiroshi Watanabe:“四个维度中分层伊辛模型的琐碎性”Commun。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HARA Takashi其他文献
MODEL EXPERIMENT STUDY ON EFFECTIVENESS OF COUNTERMEASURES AGAINST BUMP OF ROAD EMBANKMENT SURFACE CAUSED BY EARTHQUAKE
地震路基面凸起对策有效性模型试验研究
- DOI:
10.5030/jcigsjournal.37.13 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
TATTA Naoki;SOGA Hiroyuki;KUSAKA Hirohiko;HARA Takashi - 通讯作者:
HARA Takashi
HARA Takashi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HARA Takashi', 18)}}的其他基金
Study on genetic control mechanism of excess water tolerance during germination focusing on antibacterial activity
以抗菌活性为核心的发芽过程耐过量水分遗传调控机制研究
- 批准号:
20K15507 - 财政年份:2020
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Study on photoperiod sensitivity and ecotype that contributes to improving and stabilizing buckwheat yield
有助于提高和稳定荞麦产量的光周期敏感性和生态型研究
- 批准号:
16K18642 - 财政年份:2016
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Study on Iwasawa theoretic phenomena appearing in non-commutative Galois deformations
非交换伽罗瓦变形中岩泽理论现象的研究
- 批准号:
26800014 - 财政年份:2014
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Ultimate strength and failure characteristics of R/C cylindrical shell under combined loading
复合载荷下R/C圆柱壳的极限强度及破坏特性
- 批准号:
22560580 - 财政年份:2010
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Renormalization Group Approach to Stochastic Geometric Models
随机几何模型的重正化群方法
- 批准号:
21654020 - 财政年份:2009
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Studies on inhibitory effect against mast cell function and anti-allergic property of GABA
GABA对肥大细胞功能的抑制作用及抗过敏作用的研究
- 批准号:
21780122 - 财政年份:2009
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Towards deeper understanding of renormalization group and lace expansion
更深入地理解重正化群和花边扩展
- 批准号:
16540102 - 财政年份:2004
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Experimental analysis of R/C cylindrical shell behavior under idealized boundary and loading conditions
理想边界和载荷条件下 R/C 圆柱壳行为的实验分析
- 批准号:
12650593 - 财政年份:2000
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical Study of Critical Phenomena for Statistical Models in Probability
概率统计模型关键现象的数学研究
- 批准号:
11640104 - 财政年份:1999
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Developing Statistical Mechanics of Polymer Gels Based on Self-Avoiding Walk
基于自回避行走的聚合物凝胶统计力学发展
- 批准号:
22K13973 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The Statistical Mechanics and Combinatorics of Self-Avoiding Walk and Directed Path Models of Polymers
聚合物自回避行走和有向路径模型的统计力学和组合学
- 批准号:
RGPIN-2014-04731 - 财政年份:2018
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
The Statistical Mechanics and Combinatorics of Self-Avoiding Walk and Directed Path Models of Polymers
聚合物自回避行走和有向路径模型的统计力学和组合学
- 批准号:
RGPIN-2014-04731 - 财政年份:2017
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
The Statistical Mechanics and Combinatorics of Self-Avoiding Walk and Directed Path Models of Polymers
聚合物自回避行走和有向路径模型的统计力学和组合学
- 批准号:
RGPIN-2014-04731 - 财政年份:2016
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
The Statistical Mechanics and Combinatorics of Self-Avoiding Walk and Directed Path Models of Polymers
聚合物自回避行走和有向路径模型的统计力学和组合学
- 批准号:
RGPIN-2014-04731 - 财政年份:2015
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
The Statistical Mechanics and Combinatorics of Self-Avoiding Walk and Directed Path Models of Polymers
聚合物自回避行走和有向路径模型的统计力学和组合学
- 批准号:
RGPIN-2014-04731 - 财政年份:2014
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Self-avoiding walk on the high-dimensional Sierpinski gaskets and random trees
在高维谢尔宾斯基垫片和随机树上自回避行走
- 批准号:
11640110 - 财政年份:1999
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Self-avoiding walk and its continuum'limit on fractals and geometric figures defined by conformal mappings
共形映射定义的分形和几何图形的自回避行走及其连续体极限
- 批准号:
09640255 - 财政年份:1997
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)