Optimization in stochastic systems and applications to consumption problems

随机系统优化及其在消耗问题中的应用

基本信息

  • 批准号:
    11640126
  • 负责人:
  • 金额:
    $ 1.34万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1999
  • 资助国家:
    日本
  • 起止时间:
    1999 至 2000
  • 项目状态:
    已结题

项目摘要

The objective is to study the optimization problems in Mathematical Economics and Mathematical Finance by the recent theory of stochastic control. The main interest lies in finding the solutions of non-linear differential equations called the Hamilton-Jacobi-Bellman equations. It is proved that these equations admit the classical solutions by using the viscosity solution method. The optimal policies are shown to exist and given from the optimality conditions of the equations. The research results supported by this grant can be stated in the following summaries of three articles below.1 : We study the ergodic control problem of production planning in stochastic manufacturing systems with constant demand. The optimal control and the minimum value are given by a solution to the corresponding Bellman equation.2 : We study consumption/investment problems with long-term time-average utilities. The associated Hamilton-Jacobi-Bellman equation can be solved under some regularity conditions of utility-rate function, and the optimal portfolio and consumption-rates are exhibited in explicit forms. An application to the optimization problem with finite horizon is also given.3 : We study the stochastic optimization problem of renewable resources to maximize the expected discounted utility of exploitation. The optimal policy is shown to exist and given in a feedback form or a stochastic version of Hotelling's rule.
本文的目的是利用随机控制理论研究数理经济学和数理金融学中的最优化问题。主要的兴趣在于寻找非线性微分方程的解,称为Hamilton-Jacobi-Bellman方程。利用粘性解方法证明了这些方程存在经典解。证明了最优策略的存在性,并由方程的最优性条件给出。本研究的成果可归纳为以下三篇文章:1.研究需求为常数的随机制造系统中生产计划的遍历控制问题。最优控制和最小值是由相应的Bellman方程的解决方案。2:我们研究消费/投资问题的长期时间平均效用。在效用率函数满足一定的正则性条件下,相应的Hamilton-Jacobi-Bellman方程可解,最优投资组合和最优消费率以显式形式给出。最后给出了有限时域优化问题的一个应用。3.研究了可再生资源的随机优化问题,以最大化开发的期望贴现效用。最优策略的存在,并给出了反馈形式或随机版本的霍特林规则。

项目成果

期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Y.fujita and H.Morimoto: "On Bellman equations in quadratic ergodic control with controller constraints"Appl.Math.Optim.. 39. 1-15 (1999)
Y.fujita 和 H.Morimoto:“关于具有控制器约束的二次遍历控制中的贝尔曼方程”Appl.Math.Optim.. 39. 1-15 (1999)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Adachi and H.Morimoto: "On consumption/investment problems with long-term time-average inequalities"Stoch.Stoch.Rep.. 68. 255-271 (2000)
T.Adachi 和 H.Morimoto:“论长期平均不平等的消费/投资问题”Stoch.Stoch.Rep.. 68. 255-271 (2000)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H,Morimoto and Y.Fujita: "Ergodic centrol in stochastic manufacturing systems with constant demand"J,Math,Anal,Appl,. 243. 228-248 (2000)
H,Morimoto 和 Y.Fujita:“具有恒定需求的随机制造系统中的遍历中心”J,Math,Anal,Appl,。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.Morimoto and Y.Fujita: "Ergodic control in stochastic manufacturing systems with constant demand"J.Math.Anal.Appl.. 243. 228-248 (2000)
H.Morimoto 和 Y.Fujita:“具有恒定需求的随机制造系统中的遍历控制”J.Math.Anal.Appl.. 243. 228-248 (2000)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.Morimoto and Y.Fujita: "Ergodec control in stockastic manufacturing systems with constant demand"J.Math.A;nal.Appl. (in press).
H.Morimoto 和 Y.Fujita:“具有恒定需求的库存制造系统中的 Ergodec 控制”J.Math.A;nal.Appl。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MORIMOTO Hiroaki其他文献

MORIMOTO Hiroaki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MORIMOTO Hiroaki', 18)}}的其他基金

Theory of viscosity solutions for nonlinear variational inequalities and its applications
非线性变分不等式的粘度解理论及其应用
  • 批准号:
    21540188
  • 财政年份:
    2009
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
STUDIES ON PROGRESSION OF EXPLOSIVE SPALLING OF CONCRETE
混凝土爆炸剥落过程的研究
  • 批准号:
    19560459
  • 财政年份:
    2007
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Clarification on the Spalling of Concrete Exposed to Fire
关于混凝土遇火剥落的澄清
  • 批准号:
    17560406
  • 财政年份:
    2005
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Viscosity solutions of nonlinear variational inequalities and their applications
非线性变分不等式的粘度解及其应用
  • 批准号:
    16540160
  • 财政年份:
    2004
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies on non-linear variational inequalities by viscosity solutions
粘性解非线性变分不等式的研究
  • 批准号:
    14540178
  • 财政年份:
    2002
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on the Evaluation of Influence of Creep on Autogenous Shrinkage Stress
蠕变对自收缩应力影响的评价研究
  • 批准号:
    09650506
  • 财政年份:
    1997
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Speech Processing Based on Deep Gaussian Process With Stochastic Differential Equation Layers
基于随机微分方程层深度高斯过程的语音处理
  • 批准号:
    21K11955
  • 财政年份:
    2021
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Training Neural Networks to Discover Stochastic Differential Equation Based Models
训练神经网络以发现基于随机微分方程的模型
  • 批准号:
    2277653
  • 财政年份:
    2019
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Studentship
Propose and demonstrate the regularized recursive estimation for stochastic differential equation
提出并论证了随机微分方程的正则化递归估计
  • 批准号:
    18K18012
  • 财政年份:
    2018
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Interdisciplinary research in mathematical/data science and simulation science for stochastic differential equation models
随机微分方程模型的数学/数据科学和模拟科学的跨学科研究
  • 批准号:
    17H01100
  • 财政年份:
    2017
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Backward stochastic differential equation and nonlinear stochastic integration
后向随机微分方程和非线性随机积分
  • 批准号:
    17K05297
  • 财政年份:
    2017
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
RUI: Efficient Adaptive Backward Stochastic Differential Equation Methods for Nonlinear Filtering Problems
RUI:解决非线性滤波问题的高效自适应后向随机微分方程方法
  • 批准号:
    1720222
  • 财政年份:
    2017
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Continuing Grant
Stochastic differential equation and random field theory applied to waves in random media
随机微分方程和随机场论应用于随机介质中的波
  • 批准号:
    312798-2011
  • 财政年份:
    2015
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Discovery Grants Program - Individual
Description of light and tera-hertz wave quantum-mechanical receiver circuits by nonlinear stochastic differential equation and building their circuit simulator models
通过非线性随机微分方程描述光和太赫兹波量子力学接收器电路并建立其电路模拟器模型
  • 批准号:
    15K06075
  • 财政年份:
    2015
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Stochastic differential equation and random field theory applied to waves in random media
随机微分方程和随机场论应用于随机介质中的波
  • 批准号:
    312798-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Discovery Grants Program - Individual
Stochastic differential equation and random field theory applied to waves in random media
随机微分方程和随机场论应用于随机介质中的波
  • 批准号:
    312798-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了