Studies on non-linear variational inequalities by viscosity solutions

粘性解非线性变分不等式的研究

基本信息

  • 批准号:
    14540178
  • 负责人:
  • 金额:
    $ 1.41万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2002
  • 资助国家:
    日本
  • 起止时间:
    2002 至 2003
  • 项目状态:
    已结题

项目摘要

The purpose of this study is to solve optimization problems in mathematical economics and mathematical finance by applications of the modern theory in stochastic control The main result in this term lies in opening up a field of research of non-linear variational inequalities for the problem so as to minimize the cost functional with discretionary stopping. The content is as follows.(1)In the paper "Variational inequalities for combined control and stopping, 2003", the new definition of viscosity solutions for non-linear variational inequalities is given. The penalty method for linear variational inequalities originated by Bensoussan-Lions is developed, and it is shown that there exists a unique viscosity solution of the non-linear variational inequality. The game problem in the same setting is discussed.(2) In the paper "Variational inequalities for leavable bounded-velocity control", the key for the smoothness problem of the viscosity solutions to non-linear variational inequalities is presented. Recently, it becomes well known when the viscosity solutions of Hamilton-Jacobi-Bellman equations are smooth for the construction of optimal policies. The paper "Optimal exploitation of renewable resources by the viscosity solution method" shows that the similar method is valid for the optimal consumption problem of renewable resources in mathematical economics. These results can be applicable for various optimization problems in future.
本研究的目的是应用现代随机控制理论来解决数理经济学和数理金融学中的最优化问题。本研究的主要结果是开拓了问题的非线性变分不等式的研究领域,从而使具有任意停止的费用泛函最小化。内容如下。(1)In 2003年发表的“变分不等式联合控制与停止”一文中,给出了非线性变分不等式粘性解的新定义。发展了Bensoussan-Lions提出的线性变分不等式的罚方法,证明了非线性变分不等式存在唯一粘性解.讨论了在相同条件下的博弈问题。(2)在“可离开有界速度控制的变分不等式”一文中,给出了非线性变分不等式粘性解的光滑性问题的关键。近年来,当Hamilton-Jacobi-Bellman方程的粘性解是光滑的时,最优策略的构造问题已成为人们所熟知的。文章“粘性解方法在可再生资源最优开采中的应用”表明,类似的方法对于数理经济学中的可再生资源最优消费问题是有效的。这些结果可应用于未来的各种优化问题。

项目成果

期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Kamizono, K., Morimoto, H.: "On a variational inequality associated with a stopping game combined with a control"Stochastics and Stochastisc Rep.. 70. 99-123 (2002)
Kamizono, K.、Morimoto, H.:“关于与停止游戏和控制相结合的变分不等式”Stochastics and Stochastics Rep.. 70. 99-123 (2002)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
S.Koike, H.Morimoto: "Variational inequalities for leavable bounded-velocity control"Appl.Math.Optim.. 48. 1-20 (2003)
S.Koike、H.Morimoto:“可左有界速度控制的变分不等式”Appl.Math.Optim.. 48. 1-20 (2003)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
S.Koike, H.Morimoto: "On variational inequalities for leavable bounded-velocity control"Appl. Math. Optim.. (掲載予定).
S.Koike,H.Morimoto:“关于左有界速度控制的变分不等式”应用数学。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.Morimoto: "Variational inequalities for comfined control and stopping"SIAM J. Control and Optim. (掲載予定).
H.Morimoto:“受限控制和停止的变分不等式”SIAM J. Control and Optim(待出版)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.Morimoto, K.Kawaguchi: "Optimal exploitation of renewable resources by the viscosity solution method"Stoch. Anal. Appl.. 20. 927-946 (2002)
H.Morimoto、K.Kawaguchi:“通过粘度解决方法优化可再生资源的开发”Stoch。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MORIMOTO Hiroaki其他文献

MORIMOTO Hiroaki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MORIMOTO Hiroaki', 18)}}的其他基金

Theory of viscosity solutions for nonlinear variational inequalities and its applications
非线性变分不等式的粘度解理论及其应用
  • 批准号:
    21540188
  • 财政年份:
    2009
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
STUDIES ON PROGRESSION OF EXPLOSIVE SPALLING OF CONCRETE
混凝土爆炸剥落过程的研究
  • 批准号:
    19560459
  • 财政年份:
    2007
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Clarification on the Spalling of Concrete Exposed to Fire
关于混凝土遇火剥落的澄清
  • 批准号:
    17560406
  • 财政年份:
    2005
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Viscosity solutions of nonlinear variational inequalities and their applications
非线性变分不等式的粘度解及其应用
  • 批准号:
    16540160
  • 财政年份:
    2004
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Optimization in stochastic systems and applications to consumption problems
随机系统优化及其在消耗问题中的应用
  • 批准号:
    11640126
  • 财政年份:
    1999
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on the Evaluation of Influence of Creep on Autogenous Shrinkage Stress
蠕变对自收缩应力影响的评价研究
  • 批准号:
    09650506
  • 财政年份:
    1997
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Advancement in viscosity solution theory: asymptotic and boundary value problems
粘度解理论的进展:渐近问题和边值问题
  • 批准号:
    20K03688
  • 财政年份:
    2020
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Nonlinear partial differential equations on sub-Riemannian manifolds based on viscosity solution theory
基于粘性解理论的亚黎曼流形非线性偏微分方程
  • 批准号:
    19K03574
  • 财政年份:
    2019
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on the theories of viscosity solution, weak KAM, and application to the asymptotic analysis on Hamilton-Jacobi equations
粘性解、弱KAM理论研究及其在Hamilton-Jacobi方程渐近分析中的应用
  • 批准号:
    17KK0093
  • 财政年份:
    2018
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research)
Viscosity solution theory for quasilinear PDEs, free boundary problems and thier applications
拟线性偏微分方程的粘度解理论、自由边界问题及其应用
  • 批准号:
    18K13436
  • 财政年份:
    2018
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Construction of the viscosity solution theory connecting continuous problems and discrete problems
连接连续问题和离散问题的粘性解理论的构建
  • 批准号:
    16K17621
  • 财政年份:
    2016
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Viscosity solution theory for fully nonlinear equations and its applications
全非线性方程粘度解理论及其应用
  • 批准号:
    20340026
  • 财政年份:
    2008
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Viscosity solution methods in partial differential equations and applications
偏微分方程中的粘度求解方法及应用
  • 批准号:
    0098565
  • 财政年份:
    2001
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Standard Grant
Study on Optimal Controls and Differential Games via the Viscosity Solution Theory
基于粘性解理论的最优控制与微分博弈研究
  • 批准号:
    12640103
  • 财政年份:
    2000
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Applications to the optimal control and differential game via the viscosity solution theory
通过粘度解理论在最优控制和微分博弈中的应用
  • 批准号:
    09640242
  • 财政年份:
    1997
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了