Asymptotic behavior of solutions of quasilinear parabolic equations with convection

对流拟线性抛物型方程解的渐近行为

基本信息

  • 批准号:
    11640182
  • 负责人:
  • 金额:
    $ 1.15万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1999
  • 资助国家:
    日本
  • 起止时间:
    1999 至 2000
  • 项目状态:
    已结题

项目摘要

In our project, we obtain the precise results about the asymptotic behavior of nonnegative solutions of the Cauchy problem for equation μ_t-Δμ^m=μ^p in R^N where p is supercritical in the sense of Sobolev embedding and p satisfies some conditions such that the Cauchy problem has "peaking solutions". We state the results roughly speaking as follows :Let the continuous initial data μ_0 (γ)(γ=|x|) satisfy the next conditions : There exist α ∈ (2/(p-m), N) and C>0 such that μ_0 (γ) γ^α【less than or equal】C for γ>1, and there exists γ_0>0 such that (i) μ_0 (γ) is a nondecreasing function in γ【greater than or equal】γ_0 and (ii) μ_0 (γ)>0 in [0, γ_0], where we do not need to assume the condition (ii) in the case m=1. Further, let μ(t ; μ_0) be the solution of the Cauchy problem with the initial data μ_0 (γ), and let t_b (μ_0) and t_c (μ_0) be the blow-up time and the complete blow-up time of the solution, respectively. Then, μ(t ; γμ_0))(μ_0 (γ)*0) is classified into the next three types according to the value of γ>0 as follows : There exists γ_1 ∈(0, ∞) such that (Type I) t_c (γμ_0)<∞ i.e. μ(t ; γμ_0) blows up in finite time if γ>γ_1, (Type II) t_b (γμ_0)<∞, t_c (γμ_0)=∞ and ‖μ(t ; γμ_0)‖_∞=O (t^<-1/(p-1)>) if γ=γ_1, (Type III) t_b (γμ_0)=∞ and ‖μ(t ; γμ_0)‖_∞=O(t^-1/(p-1)) if 0<γ<γ_1.
本文得到了方程μ_t-Δμ^m=μ^p在R^N中的Cauchy问题非负解的渐近性态的精确结果,其中p在Sobolev嵌入意义下是超临界的,且p满足某些条件使得Cauchy问题有“峰解”.我们把结果粗略地表述如下:设连续的初始数据μ_0(γ)(γ=| X|)满足以下条件:存在α ∈(2/(p-m),N)和C>0,使得对于γ>1,μ 0(γ)γ^α[小于或等于]C,并且存在γ 0>0,使得(i)μ 0(γ)是关于γ[大于或等于]γ 0的非减函数,(ii)μ 0(γ)>0关于[0,γ 0],其中,在m=1的情况下,我们不需要假设条件(ii)。此外,设μ(t ; μ_0)为初值为μ_0(γ)的Cauchy问题的解,t_B(μ_0)和t_c(μ_0)分别为解的爆破时间和完全爆破时间。然后,μ(t ; γμ_0)(μ_0(γ)*0)按γ>0分为以下三种类型:存在γ_1 ∈(0,∞)使得(Ⅰ型)t_c(γμ_0)<∞,即当γ>γ_1时,μ(t ; γμ_0)在有限时间内爆破;(Ⅱ型)t_B(γμ_0)<∞,t_c(γμ_0)=∞,且μ(t ;(Ⅲ型)t_B(γ μ_0)=∞,且当0<γ<γ_1时,τ μ(t ; γ μ_0)τ_∞=O(t^-1/(p-1)).

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
R.Suzuki: "Asymptotic behavior of solutions of quasilinear parabolic equations with slowly decaying initial data"Adv.Math.Sci.Appl.. 9. 291-317 (1999)
R.Suzuki:“具有缓慢衰减初始数据的拟线性抛物方程解的渐近行为”Adv.Math.Sci.Appl.. 9. 291-317 (1999)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
R.Suzuki: "Complete blow-up for quasilinear degenerate parabolic equations"Proc.Royal Soc.Edinburgh. 130A. 877-908 (2000)
R.Suzuki:“拟线性简并抛物线方程的完全放大”Proc.Royal Soc.Edinburgh。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SUZUKI Ryuichi其他文献

SUZUKI Ryuichi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SUZUKI Ryuichi', 18)}}的其他基金

Study on the asymptotic behavior of solutions of quasilinear parabolic equations with a blow-up term
带爆炸项的拟线性抛物型方程解的渐近行为研究
  • 批准号:
    17540171
  • 财政年份:
    2005
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Asymptotic behavior of null geodesics near future null infinity and its application
近未来零无穷大零测地线的渐近行为及其应用
  • 批准号:
    22KJ1933
  • 财政年份:
    2023
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
The algebraic analysis of evanescent operators in effective field theory and their asymptotic behavior
有效场论中倏逝算子的代数分析及其渐近行为
  • 批准号:
    22KJ1072
  • 财政年份:
    2023
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Regularity and Asymptotic Behavior in Fluid Dynamics
流体动力学中的规律性和渐近行为
  • 批准号:
    2205493
  • 财政年份:
    2022
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Standard Grant
Asymptotic behavior of global in time solutions to the viscous conservation laws
粘性守恒定律全局时间解的渐近行为
  • 批准号:
    22K03371
  • 财政年份:
    2022
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Asymptotic behavior of solutions to hyperbolic and dispersive equations with damping terms
具有阻尼项的双曲和色散方程解的渐近行为
  • 批准号:
    19K03596
  • 财政年份:
    2019
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Elucidation of the asymptotic behavior of the solution to nonlinear dispersive equations in high dimensions
高维非线性色散方程解的渐近行为的阐明
  • 批准号:
    19K14578
  • 财政年份:
    2019
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Structural conditions for global existence of solutions and the asymptotic behavior of global solutions for systems of nonlinear partial differential equations related to nonlinear waves
与非线性波相关的非线性偏微分方程组解全局存在的结构条件和全局解的渐近行为
  • 批准号:
    18H01128
  • 财政年份:
    2018
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
The asymptotic behavior of the Reidemeister torsion for degenerate hyperbolic structures
简并双曲结构的 Reidemeister 挠率的渐近行为
  • 批准号:
    17K05240
  • 财政年份:
    2017
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A study of asymptotic behavior of threshold orbit arising in gradient systems with noncompact energy structure
非紧能量结构梯度系统阈轨道渐近行为研究
  • 批准号:
    17K05323
  • 财政年份:
    2017
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Asymptotic behavior of solutions of dissipative hyperbolic equations
耗散双曲方程解的渐近行为
  • 批准号:
    17K05338
  • 财政年份:
    2017
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了