Study on the asymptotic behavior of solutions of quasilinear parabolic equations with a blow-up term

带爆炸项的拟线性抛物型方程解的渐近行为研究

基本信息

  • 批准号:
    17540171
  • 负责人:
  • 金额:
    $ 2.12万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2005
  • 资助国家:
    日本
  • 起止时间:
    2005 至 2007
  • 项目状态:
    已结题

项目摘要

In our project, we study the asymptotic behavior of nonnegative solutions of the Dirichlet problem(Ω is bounded) or the Cauchy problem(Ω = R^N) for a quasilinear parabolic equation with a heat source : u_t-Δu^m= F in(x, t)∈ Ω ×(0, T), where m ≧1, and F =f(u)(a usual heat source) or F = f(u(x_0(t), t))(x_0(t)∈Ω)(localized reaction).Furthermore, we assume that f satisfies some blow-up condition. This equation represents various phenomena and gives interesting various problems. We have obtained the next three results for these problems.(i) When m=1, Ω is a bounded domain and F=f(u(x_0(t), t)), we showed that the boundedness of global solutions is determined by the asymptotic behavior of x_0(t)as t→∞.This result is a part of our result on the classification of all solutions. However, when m> 1, we do not have good results for this problem, since we do not know whether or not the uniqueness of solutions holds.(ii)When m ≧1, Ω= R^N and F=u^P , we studied the precise behavior of solutions which blow up at space infinity. In particular, we introduced "blow-up solution with the least blow-up time" and showed that such a solution blows up at space infinity. We give a necessary and sufficient condition for a solution to be a blow-up solution with the least blow-up time. We also give a necessary and sufficient condition for a blow-up solution with the least blow-up time to blow up in a direction ψ.(iii)When m>1, Ω= R^N and F = u^P , we studied under what condition the solution blows up in finite time, and got new results.
在我们的项目中,我们研究了一类具有热源的拟线性抛物方程:u_t-Δu^m=F in(x,t)∈Ω×(0,T),其中m≧1,F=f(U)(通常的热源)或F=f(u(x_0(T),t))(x_0(T))(x_0(T)∈Ω)(局部化反应)非负解的渐近行为。这个方程代表了各种现象,并给出了有趣的各种问题。(I)当m=1,Ω为有界域且F=f(u(x_0(T),t))时,我们证明了整体解的有界性由x_0(T)的渐近行为决定,即t_→∞,这是我们关于所有解的分类结果的一部分。然而,当m>1时,我们对这个问题没有很好的结果,因为我们不知道解的唯一性是否成立。(Ii)当m≧1,Ω=R^N和F=u^P时,我们研究了在空间无穷远爆破的解的精确行为。特别地,我们引入了“具有最少爆破时间的爆破解”,并证明了这样的解在空间无穷远处爆破。给出了解是具有最小爆破时间的爆破解的充要条件。我们还给出了一个爆破时间最短的爆破解在ψ方向爆破的充要条件。(3)当m>1,Ω=R^N和F=u^P时,我们研究了该解在有限时间内爆破的条件,得到了新的结果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
asymptotic behavior of solutions of a semilinear heat equation with localized reaction
具有局域反应的半线性热方程解的渐近行为
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R.;Suzuki
  • 通讯作者:
    Suzuki
局所反応項を持つ半線形熱方程式の解の挙動
具有局部反应项的半线性热方程解的行为
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R.;Suzuki;鈴木 龍一
  • 通讯作者:
    鈴木 龍一
Blow-up directions for quasilinear parabolic equations
拟线性抛物线方程的爆炸方向
Blow-up dinections for quasilinear parabolic equations
拟线性抛物型方程的爆炸指令
Universal bounds for quasilinear parabolic equations with convection
对流拟线性抛物线方程的通用界限
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SUZUKI Ryuichi其他文献

SUZUKI Ryuichi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SUZUKI Ryuichi', 18)}}的其他基金

Asymptotic behavior of solutions of quasilinear parabolic equations with convection
对流拟线性抛物型方程解的渐近行为
  • 批准号:
    11640182
  • 财政年份:
    1999
  • 资助金额:
    $ 2.12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似国自然基金

拟线性双曲型方程组的理论及数值分析
  • 批准号:
    10371124
  • 批准年份:
    2003
  • 资助金额:
    15.0 万元
  • 项目类别:
    面上项目

相似海外基金

Mathematical approach to 2 phase problem in unbounded domains and an extension of its approach to the theory of quasilinear parabolic equations
无界域中两相问题的数学方法及其对拟线性抛物型方程理论的扩展
  • 批准号:
    22H01134
  • 财政年份:
    2022
  • 资助金额:
    $ 2.12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Regularity and Stability for Solutions of Quasilinear Wave Equations with Singularities
具有奇异性的拟线性波动方程解的正则性和稳定性
  • 批准号:
    2206218
  • 财政年份:
    2022
  • 资助金额:
    $ 2.12万
  • 项目类别:
    Continuing Grant
Asymptotic analysis of quasilinear ordinary differential equations and its application to partial differential equations
拟线性常微分方程的渐近分析及其在偏微分方程中的应用
  • 批准号:
    21K03307
  • 财政年份:
    2021
  • 资助金额:
    $ 2.12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
New developments in mathematical analysis of spatio-temporal nonuniform dynamics in quasilinear hyperbolic-parabolic conservation laws
拟线性双曲-抛物线守恒定律时空非均匀动力学数学分析新进展
  • 批准号:
    20H00118
  • 财政年份:
    2020
  • 资助金额:
    $ 2.12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Stochastic analysis on stochastic generalized Cahn-Hilliard equations
随机广义 Cahn-Hilliard 方程的随机分析
  • 批准号:
    20K03627
  • 财政年份:
    2020
  • 资助金额:
    $ 2.12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Quasilinear Dissipation of Turbulently-Generated Kinetic Alfven Waves: Kinetics of Ion Heating and Solar Wind Acceleration in Coronal Holes
湍流产生的动能阿尔芬波的拟线性耗散:冕洞中离子加热和太阳风加速的动力学
  • 批准号:
    2005982
  • 财政年份:
    2020
  • 资助金额:
    $ 2.12万
  • 项目类别:
    Standard Grant
Quasilinear symmetric hyperbolic-hyperbolic systems of second or mixed order, with applications to relativistic fluid dynamics
二阶或混合阶拟线性对称双曲-双曲系统,及其在相对论流体动力学中的应用
  • 批准号:
    423781085
  • 财政年份:
    2019
  • 资助金额:
    $ 2.12万
  • 项目类别:
    Research Grants
CAREER: Quasilinear Dispersive Evolutions in Fluid Dynamics
职业:流体动力学中的拟线性色散演化
  • 批准号:
    1845037
  • 财政年份:
    2019
  • 资助金额:
    $ 2.12万
  • 项目类别:
    Continuing Grant
Mathematical analysis of quasilinear partial differential equations in metric graphs
度量图中拟线性偏微分方程的数学分析
  • 批准号:
    19K23405
  • 财政年份:
    2019
  • 资助金额:
    $ 2.12万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Regularity Theory for Degenerate Quasilinear Wave Equations and its Applications
简并拟线性波动方程的正则理论及其应用
  • 批准号:
    19K14573
  • 财政年份:
    2019
  • 资助金额:
    $ 2.12万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了