Study on the asymptotic behavior of solutions of quasilinear parabolic equations with a blow-up term
带爆炸项的拟线性抛物型方程解的渐近行为研究
基本信息
- 批准号:17540171
- 负责人:
- 金额:$ 2.12万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2005
- 资助国家:日本
- 起止时间:2005 至 2007
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In our project, we study the asymptotic behavior of nonnegative solutions of the Dirichlet problem(Ω is bounded) or the Cauchy problem(Ω = R^N) for a quasilinear parabolic equation with a heat source : u_t-Δu^m= F in(x, t)∈ Ω ×(0, T), where m ≧1, and F =f(u)(a usual heat source) or F = f(u(x_0(t), t))(x_0(t)∈Ω)(localized reaction).Furthermore, we assume that f satisfies some blow-up condition. This equation represents various phenomena and gives interesting various problems. We have obtained the next three results for these problems.(i) When m=1, Ω is a bounded domain and F=f(u(x_0(t), t)), we showed that the boundedness of global solutions is determined by the asymptotic behavior of x_0(t)as t→∞.This result is a part of our result on the classification of all solutions. However, when m> 1, we do not have good results for this problem, since we do not know whether or not the uniqueness of solutions holds.(ii)When m ≧1, Ω= R^N and F=u^P , we studied the precise behavior of solutions which blow up at space infinity. In particular, we introduced "blow-up solution with the least blow-up time" and showed that such a solution blows up at space infinity. We give a necessary and sufficient condition for a solution to be a blow-up solution with the least blow-up time. We also give a necessary and sufficient condition for a blow-up solution with the least blow-up time to blow up in a direction ψ.(iii)When m>1, Ω= R^N and F = u^P , we studied under what condition the solution blows up in finite time, and got new results.
在我们的项目中,我们研究了一类具有热源的拟线性抛物方程:u_t-Δu^m=F in(x,t)∈Ω×(0,T),其中m≧1,F=f(U)(通常的热源)或F=f(u(x_0(T),t))(x_0(T))(x_0(T)∈Ω)(局部化反应)非负解的渐近行为。这个方程代表了各种现象,并给出了有趣的各种问题。(I)当m=1,Ω为有界域且F=f(u(x_0(T),t))时,我们证明了整体解的有界性由x_0(T)的渐近行为决定,即t_→∞,这是我们关于所有解的分类结果的一部分。然而,当m>;1时,我们对这个问题没有很好的结果,因为我们不知道解的唯一性是否成立。(Ii)当m≧1,Ω=R^N和F=u^P时,我们研究了在空间无穷远爆破的解的精确行为。特别地,我们引入了“具有最少爆破时间的爆破解”,并证明了这样的解在空间无穷远处爆破。给出了解是具有最小爆破时间的爆破解的充要条件。我们还给出了一个爆破时间最短的爆破解在ψ方向爆破的充要条件。(3)当m>;1,Ω=R^N和F=u^P时,我们研究了该解在有限时间内爆破的条件,得到了新的结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
asymptotic behavior of solutions of a semilinear heat equation with localized reaction
具有局域反应的半线性热方程解的渐近行为
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:R.;Suzuki
- 通讯作者:Suzuki
Blow-up directions for quasilinear parabolic equations
拟线性抛物线方程的爆炸方向
- DOI:
- 发表时间:2008
- 期刊:
- 影响因子:0
- 作者:Y.Seki;R.Suzuki and N.Umedo
- 通讯作者:R.Suzuki and N.Umedo
Blow-up dinections for quasilinear parabolic equations
拟线性抛物型方程的爆炸指令
- DOI:
- 发表时间:2008
- 期刊:
- 影响因子:0
- 作者:Y. Seki;N. Umeda;R. Suzuki
- 通讯作者:R. Suzuki
Universal bounds for quasilinear parabolic equations with convection
对流拟线性抛物线方程的通用界限
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:Y. Seki;N. Umeda;R. Suzuki;R.Suzuki
- 通讯作者:R.Suzuki
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SUZUKI Ryuichi其他文献
SUZUKI Ryuichi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SUZUKI Ryuichi', 18)}}的其他基金
Asymptotic behavior of solutions of quasilinear parabolic equations with convection
对流拟线性抛物型方程解的渐近行为
- 批准号:
11640182 - 财政年份:1999
- 资助金额:
$ 2.12万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似国自然基金
拟线性双曲型方程组的理论及数值分析
- 批准号:10371124
- 批准年份:2003
- 资助金额:15.0 万元
- 项目类别:面上项目
相似海外基金
Mathematical approach to 2 phase problem in unbounded domains and an extension of its approach to the theory of quasilinear parabolic equations
无界域中两相问题的数学方法及其对拟线性抛物型方程理论的扩展
- 批准号:
22H01134 - 财政年份:2022
- 资助金额:
$ 2.12万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Regularity and Stability for Solutions of Quasilinear Wave Equations with Singularities
具有奇异性的拟线性波动方程解的正则性和稳定性
- 批准号:
2206218 - 财政年份:2022
- 资助金额:
$ 2.12万 - 项目类别:
Continuing Grant
Asymptotic analysis of quasilinear ordinary differential equations and its application to partial differential equations
拟线性常微分方程的渐近分析及其在偏微分方程中的应用
- 批准号:
21K03307 - 财政年份:2021
- 资助金额:
$ 2.12万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
New developments in mathematical analysis of spatio-temporal nonuniform dynamics in quasilinear hyperbolic-parabolic conservation laws
拟线性双曲-抛物线守恒定律时空非均匀动力学数学分析新进展
- 批准号:
20H00118 - 财政年份:2020
- 资助金额:
$ 2.12万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Stochastic analysis on stochastic generalized Cahn-Hilliard equations
随机广义 Cahn-Hilliard 方程的随机分析
- 批准号:
20K03627 - 财政年份:2020
- 资助金额:
$ 2.12万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Quasilinear Dissipation of Turbulently-Generated Kinetic Alfven Waves: Kinetics of Ion Heating and Solar Wind Acceleration in Coronal Holes
湍流产生的动能阿尔芬波的拟线性耗散:冕洞中离子加热和太阳风加速的动力学
- 批准号:
2005982 - 财政年份:2020
- 资助金额:
$ 2.12万 - 项目类别:
Standard Grant
Quasilinear symmetric hyperbolic-hyperbolic systems of second or mixed order, with applications to relativistic fluid dynamics
二阶或混合阶拟线性对称双曲-双曲系统,及其在相对论流体动力学中的应用
- 批准号:
423781085 - 财政年份:2019
- 资助金额:
$ 2.12万 - 项目类别:
Research Grants
CAREER: Quasilinear Dispersive Evolutions in Fluid Dynamics
职业:流体动力学中的拟线性色散演化
- 批准号:
1845037 - 财政年份:2019
- 资助金额:
$ 2.12万 - 项目类别:
Continuing Grant
Mathematical analysis of quasilinear partial differential equations in metric graphs
度量图中拟线性偏微分方程的数学分析
- 批准号:
19K23405 - 财政年份:2019
- 资助金额:
$ 2.12万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Regularity Theory for Degenerate Quasilinear Wave Equations and its Applications
简并拟线性波动方程的正则理论及其应用
- 批准号:
19K14573 - 财政年份:2019
- 资助金额:
$ 2.12万 - 项目类别:
Grant-in-Aid for Early-Career Scientists