Research on the descent problem of base fields of open affine algebraic plane curves

开仿射代数平面曲线基域下降问题研究

基本信息

  • 批准号:
    12640019
  • 负责人:
  • 金额:
    $ 1.92万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2000
  • 资助国家:
    日本
  • 起止时间:
    2000 至 2001
  • 项目状态:
    已结题

项目摘要

Let k be a field and let K be an algebraic closure of k. A commutative k-algebra A is called a k-form of an affine line if the K-algebra obtained by an extension of the base field k of A to K is K-isomorphic to an affine line over K. The main purpose of this project is to study k-algebraic structures of an arbitrary k-form A of an affine line. Only a sporadic examples of non trivial (i.e. non polynomial) k-forms of the affine line have been known before the start of the project. During a period of two years for the project the head investigator obtained the following results. First, we found a new series of non trivial k-forms of the affine line, and next proved any k-form A of the affine line is k-isomorphic to one of those examples. In particular, such a k-form A is given as a residue of a polynomial ring over k in three variables modulo a prime ideal P generated by three elements which can be explicitly written (Structure theorem of k-forms of affine line). As a corollary of this theorem, we have the following: A k-form A of the affine line is generated by two elements over k if and only if the prime ideal P corresponding A defined above is an ideal theoretic complete intersection. Using these results we can also find all groups (up to isomorphisms) obtained as the k-automorphism group of some k-form of an affine line. For the proof of these results, we use a Galois theory for extensions of rings, which the head investigator has been proved. A survey of these results can be found in [T. Asanuma, On A^1 -forms, Memoirs of the faculty of education Toyama University No.56 (2002)43-51].
设k为域,k为k的代数闭包。如果将a的基域k扩展到k,得到的k代数与k上的仿射线k同构,则可交换k代数a称为仿射线的k形。本课题的主要目的是研究仿射线的任意k形a的k-代数结构。在项目开始之前,只有一个零星的非平凡(即非多项式)仿射线的k-形式的例子是已知的。在该项目的两年期间,首席调查员获得了以下结果。首先,我们发现了一系列新的仿射线的非平凡k型,然后证明了仿射线的任意k型a与这些例子中的一个是k同构的。特别地,这样的k型a被给出为一个多项式环在k上的三变量余数模一个由三个元素生成的素理想P,它可以被显式地写出来(仿射线k型的结构定理)。作为这个定理的一个推论,我们有:仿射线的k型a是由k上的两个元素生成的,当且仅当上面定义的与a对应的素理想P是理想理论完全交。利用这些结果,我们还可以找到仿射线的k-形式的k-自同构群。为了证明这些结果,我们使用了伽罗瓦理论来证明环的扩展,这是首席研究员已经证明的。对这些结果的调查可以在[T.]浅沼,论A^1 -形式,富山大学教育教师回忆录第56期(2002年)43-51。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Teruo Asanuma: "On A^1-form"Memoirs of the faculty of education, Toyama University. No. 56. 43-51 (2002)
浅沼辉雄:富山大学教育学部回忆录《On A^1-form》。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
浅沼照雄: "On A^1-Forms"富山大学教育学部紀要. 56. 43-51 (2002)
Teruo Asanuma:“论 A^1-Forms”富山大学教育学部通报 56. 43-51 (2002)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
浅沼照雄: "On A^1-forms"富山大学教育学部紀要. 56巻. 43-51 (2002)
Teruo Asanuma:“论 A^1 形式”富山大学教育学部通报,第 56 卷 43-51(2002 年)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ASANUMA Teruo其他文献

ASANUMA Teruo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ASANUMA Teruo', 18)}}的其他基金

Study on affine algebraic varieties and extension of the base field
仿射代数簇及基域的推广研究
  • 批准号:
    20540040
  • 财政年份:
    2008
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research of the cancellation problem in affine algebraic geometry
仿射代数几何抵消问题的研究
  • 批准号:
    16540016
  • 财政年份:
    2004
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Structure Constants for Bases of the Polynomial Ring
多项式环基的结构常数
  • 批准号:
    1763336
  • 财政年份:
    2018
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Continuing Grant
Structural analysis of the automorphism group of a polynomial ring and its application
多项式环自同构群的结构分析及其应用
  • 批准号:
    15K04826
  • 财政年份:
    2015
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on subrings and automorphisms of a polynomial ring
多项式环的子环和自同构研究
  • 批准号:
    19840041
  • 财政年份:
    2007
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Young Scientists (Start-up)
Study on matrix equations over a Laurent polynomial ring obtained from differential equations with a time-delay
时滞微分方程洛朗多项式环上矩阵方程的研究
  • 批准号:
    19540128
  • 财政年份:
    2007
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Problems in Algebra: Homology of the Automorphism Group Of the Polynomial Ring in N Variables Over a Field
代数问题:域上 N 变量多项式环自同构群的同调
  • 批准号:
    7703565
  • 财政年份:
    1977
  • 资助金额:
    $ 1.92万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了