Applications of integrable systems in geometry and topology
可积系统在几何和拓扑中的应用
基本信息
- 批准号:12640083
- 负责人:
- 金额:$ 2.24万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2000
- 资助国家:日本
- 起止时间:2000 至 2001
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Results were obtained on the geometry and topology of harmonic maps and spaces of harmonic maps, especially in the case where the domain is a Riemann surface and the target space is a compact Lie group or symmetric space. Guest used a generalization of the Weierstrass representation for minimal surfaces to study harmonic maps from the two-dimensional sphere (or, more generally, harmonic maps of finite uniton number, from any Riemann surface) to the unitary group. Earlier results of Uhlenbeck, Segal, Dorfmeister-Pedit-Wu, Burstall-Guest were developed into an effective tool for describing such maps. In particular, an explicit canonical form was obtained, and this was used to study the space of all such maps. The main application was a description of the connected components of the space of harmonic maps from the two-dimensional sphere to the unitary group. Ohnita used a different approach, based on earlier work of Hitchin in gauge theory, to obtain a framework for studying the geometry (in particular, the pre-symplectic geometry) of spaces of harmonic maps.The harmonic map equation can be regarded as an integrable system, and the above work sheds light on other integrable systems. Two other examples of integrable systems were studied from this point of view, and preliminary results obtained. The first example, studied by Guest, was the theory of quantum differential equations. Parallels with harmonic maps were established, forming the basis for future work in this direction. Results on quantum cohomology of symmetric spaces were obtained also by Ohnita and Nishimori, and on quantum cohomology of flag manifolds by Guest and Otofuji. The second example, studied by Burstall and Calderbank, was the integrable systems aspect of conformal and Mobius geometry, and a new approach was initiated.
得到了调和映射和调和映射空间的几何和拓扑方面的结果,特别是当区域是Riemann曲面,目标空间是紧李群或对称空间时。Guest使用极小曲面的魏尔斯特拉斯表示的推广来研究从二维球面到酉群的调和映射(或者,更一般地,从任意黎曼曲面的有限酉数的调和映射)到酉群。乌伦贝克、西格尔、Dorfmeister-Pedit-Wu、Burstall-Guest的早期结果被发展成为描述这类地图的有效工具。特别地,得到了一个显式标准形,并用它研究了所有这类映射的空间。它的主要应用是描述从二维球面到酉群的调和映射空间的连通分支。Ohnita用一种不同的方法,在Hitchin早期规范理论工作的基础上,得到了研究调和映射空间的几何(特别是预辛几何)的框架。调和映射方程可以看作是一个可积系统,上述工作对其他可积系统也有启发意义。从这个角度研究了另外两个可积系统的例子,得到了初步的结果。Guest研究的第一个例子是量子微分方程组理论。建立了调和映射的平行关系,为今后在这一方向上的工作奠定了基础。Ohnita和Nishimori也得到了对称空间的量子上同调,Guest和Otofuji得到了FLAG流形的量子上同调.Burstall和Calderbank研究的第二个例子是共形几何和Mobius几何的可积系方面,并开创了一种新的方法。
项目成果
期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
M.Guest, T.Otofuji: "Quantum cohomology and the periodic Toda lattice"Communications in Math. Physics. 217. 475-487 (2001)
M.Guest、T.Otofuji:“量子上同调和周期性户田格”数学通讯。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y.Ohnita, M.Mukai: "Gauge theoletic approach to harmonic maps and subspace in moduli spaces"'Integrable systems, Geometry and Topology' (NCYS Volume) International Press.
Y.Ohnita、M.Mukai:“规范调和映射和模空间子空间的理论方法”“可积系统、几何和拓扑”(NCYS 卷)国际出版社。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Guest: "Introduction to homological geometry : I"Proceedings of workshop at NCTS (Taiwan). (to appear).
M.Guest:“同调几何导论:I”NCTS(台湾)研讨会论文集。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Guest: "Introduction to homological geometry : II"Proceedings of workshop at NCTS (Taiwan). (to appear).
M.Guest:“同调几何导论:II”NCTS(台湾)研讨会论文集。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M. Guest: "Pseudo vector bundles and quasifibrations"Hokkaido J. Math.. 29. 159-170 (2000)
M. Guest:“伪向量丛和准纤维”Hokkaido J. Math.. 29. 159-170 (2000)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GUEST Martin其他文献
GUEST Martin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GUEST Martin', 18)}}的其他基金
Exploitation of new relations between differential geometry and quantum cohomology in the context of integrable systems
在可积系统的背景下利用微分几何和量子上同调之间的新关系
- 批准号:
21244004 - 财政年份:2009
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Geometry and topology of integrable systems, with computer-aided experimentation and visualization
可积系统的几何和拓扑,以及计算机辅助实验和可视化
- 批准号:
14204005 - 财政年份:2002
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
相似海外基金
New Development of Submanifold Geometry and Harmonic Map Theory in Symmetric Spaces
对称空间子流形几何与调和映射理论的新进展
- 批准号:
15K04851 - 财政年份:2015
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on submanifold geometry and harmonic map theory in symmetric spaces
对称空间子流形几何与调和映射理论研究
- 批准号:
24540090 - 财政年份:2012
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Regularity for the evolutionary p-Laplace operator and global existence of the p-harmonic map flows
演化 p-拉普拉斯算子的正则性和 p 调和映射流的全局存在性
- 批准号:
24540215 - 财政年份:2012
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A regularity criterion for the harmonic map flows and asymptotic analysis for singularity
调和映射流的正则判据和奇点的渐近分析
- 批准号:
21540222 - 财政年份:2009
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical research on regularity and singularity for the m-harmonic map flows and energy quantization phenomenon
调和图流规律性与奇异性及能量量子化现象的数学研究
- 批准号:
19540221 - 财政年份:2007
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Dirichlet space and analysis of harmonic map over the space of Gromov-Hausdorff limit spaces
狄利克雷空间与格罗莫夫-豪斯多夫极限空间上的调和映射分析
- 批准号:
13640220 - 财政年份:2001
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Regularity, Convergence, and Uniqueness Problems for Harmonic Map Flows
调和映射流的正则性、收敛性和唯一性问题
- 批准号:
0096062 - 财政年份:1999
- 资助金额:
$ 2.24万 - 项目类别:
Standard Grant
Regularity, Convergence, and Uniqueness Problems for Harmonic Map Flows
调和映射流的正则性、收敛性和唯一性问题
- 批准号:
9706855 - 财政年份:1997
- 资助金额:
$ 2.24万 - 项目类别:
Standard Grant
S^2-値のharmonic mapの正則性について
关于S^2值的调和图的规律性
- 批准号:
04740074 - 财政年份:1992
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)