WKB analysis for high-order ordinary differencial equations with a large parameter
大参数高阶常微分方程的WKB分析
基本信息
- 批准号:12640195
- 负责人:
- 金额:$ 1.6万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2000
- 资助国家:日本
- 起止时间:2000 至 2002
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The purpose of this research was to establish the exact WKB analysis for ordinary differential equations of higher-order with a large parameter. Regarding local theory, we have achieved this purpose. The results we have obtained are as follows:(1) We established a new method of describing Stokes geometry for differential equations of higher-order with a large parameter. This method is called the exact steepest descent method. By using this method, we can find complete Stokes geometry for linear ordinary differential equations of arbitrary order with quadratic coefficients. This is a natural generalization of the steepest descent method.(2) We consider linear ordinary differential equation of infinite order with a large parameter satisfying the following condition: Regarding the large parameter as a differential operator with respect to the variable of the Borel plane, they are microdifferential operators of order 0 and they do not contain that variable. The category of such operators c … More ontains linear ordinary differential operators of arbitrary order with the large parameter. For such an operator, we have defined the notions of WKB solutions, turning points and Stokes curves. We have also introduced the notion of simplicity of turning points. These notions are natural extension of that for finite-order case,(3) Such an equation in the class mentioned above may admit infinitely many phases. After fixing one of it, we have constructed the WKB solution of the difierential equation. This construction is applicable to linear ordinary differential equations of arbitrary order.(4) We have established local decomposition theorem near turning points. If we consider a simple turning point of a differential equation of infinite order, we can decompose the relevant differential operator into the product of two operators; one is invertible and another is of second order whose turning point is exactly the same as the simple turning point. Moreover, the phase of the second order operator is the coincident with the original phase. This implies that an infinite-order differential equation is reduced to a second-order equation near a simple turning point. Thus we have obtained local connection formulas of infinite-order equations near simple turning points. Less
本研究的目的是建立高阶大参数常微分方程的精确WKB分析。关于地方理论,我们已经达到了这个目的。我们得到的结果如下:(1)建立了高阶大参数微分方程的Stokes几何的一种新的描述方法。这种方法被称为精确最速下降法。利用这种方法,我们可以找到任意阶二次系数线性常微分方程的完全Stokes几何。这是最速下降法的自然推广。(2)考虑带大参数的无穷阶线性常微分方程满足以下条件:当大参数作为关于Borel平面变量的微分算子时,它们是0阶微微分算子,且不含该变量.这类经营者的类别c ...更多信息 得到了任意阶的大参数线性常微分算子.对于这样的算子,我们定义了WKB解、转向点和Stokes曲线的概念。我们还介绍了转折点的简单性概念。这些概念是有限阶情形的自然推广。(3)这类方程可以有无穷多个相。在确定了其中一个解后,我们构造了该微分方程的WKB解.这种构造方法适用于任意阶线性常微分方程。(4)建立了转向点附近的局部分解定理。如果我们考虑无穷阶微分方程的一个简单转向点,我们可以将相关的微分算子分解为两个算子的乘积;一个是可逆的,另一个是二阶的,其转向点与简单转向点完全相同。此外,二阶算符的相位与原相位一致。这意味着一个无限阶微分方程在一个简单的转折点附近化为一个二阶方程。从而得到了无穷阶方程在简单转向点附近的局部联络公式。少
项目成果
期刊论文数量(19)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
S.Izumi, S.Koike, T.-C.Kuo: "Computations and stability of the Fukui invariant"Compositio Mathematica. 130. 49-73 (2002)
S.Izumi、S.Koike、T.-C.Kuo:“福井不变量的计算和稳定性”Compositio Mathematica。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
S. Izumi, & Koike and T.-C. Kuo: "Computations and stability of the Fukui invariant"Compositio Mathematica. 130. 49-73 (2002)
S·泉,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Aoki, T.Kawai, Y.Takei: "On the exact steepest descent method : A new method for the description of Stokes curves"Journal of Mathematical Physics. 42・8. 3691-3713 (2001)
T.Aoki、T.Kawai、Y.Takei:“关于精确最速下降法:描述斯托克斯曲线的新方法”数学物理杂志 42・8 3691-3713(2001)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T. Aoki, T. Kawai and Y. Takei: "On the exact WKB analysis of operators admitting infinitely many phases"Advances in Mathematics. to appear.
T. Aoki、T. Kawai 和 Y. Takei:“关于承认无限多相的算子的精确 WKB 分析”数学进展。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T. Aoki, K. Kataoka and S. Yamazaki: "Construction of kernel functions of pseudo-Differential operators of infinite order, Actual problems in Mathematical Analysis"Gingo Publisher, Rostov on Don. 28-40 (2000)
T. Aoki、K. Kataoka 和 S. Yamazaki:“无限阶伪微分算子的核函数的构造,数学分析中的实际问题”Gingo Publisher,Rostov on Don。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
AOKI Takashi其他文献
Some relations for multiple zeta values and connection formulas for the Gauss hypergeometric functions
多个zeta值的一些关系和高斯超几何函数的连接公式
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
AOKI Takashi;OHNO Yasuo - 通讯作者:
OHNO Yasuo
AOKI Takashi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('AOKI Takashi', 18)}}的其他基金
Creation of coacervate interfaces for controlling fouling behavior
创建凝聚层界面以控制结垢行为
- 批准号:
16K14047 - 财政年份:2016
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
The metaphysics in "Tianfang Xingli" by Liu Zhi as Mulim Intellectual in Qing Dynasty
清代文人刘智《天方行理》中的玄学
- 批准号:
24520045 - 财政年份:2012
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Bio-synthesis of poly(lactic acid) by wild type PHA-producing bacteria
野生型PHA产生菌生物合成聚乳酸
- 批准号:
23655145 - 财政年份:2011
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Development of growth inhibition of fish pathogenic virus by RNA aptamers
RNA适体抑制鱼类病原病毒生长的研究进展
- 批准号:
22658059 - 财政年份:2010
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Asymptotic analysis of instanton-type solutions
瞬子型解的渐近分析
- 批准号:
22540210 - 财政年份:2010
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Trial of the First Year Education for Acquiring Exercise Habits- A Case of Using Portfolio -
一年级运动习惯养成教育试行-以档案袋运用为例-
- 批准号:
22500592 - 财政年份:2010
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Archeological study on genealogy of the engineering works technology in ancient Japan and Korea
古代日本、韩国工程技术谱系的考古研究
- 批准号:
21720294 - 财政年份:2009
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Development and application of the shark single chain monoclonal antibody for the treatment of fish and shellfish diseases
鲨鱼单链单克隆抗体治疗鱼贝类疾病的开发及应用
- 批准号:
21248025 - 财政年份:2009
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Exact WKB analysis of systems of differential equations
微分方程组的精确 WKB 分析
- 批准号:
18540197 - 财政年份:2006
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Chinese philosophy and Sufi theory of "Tianfang Xingli(天方性理)" written by Liu ZHI(劉智) Who is a Chinese Moslem scholar in Qing Dynasty
清代中国穆斯林学者刘植《天方行理》的中国哲学与苏菲理论
- 批准号:
16520037 - 财政年份:2004
- 资助金额:
$ 1.6万 - 项目类别:
Grant-in-Aid for Scientific Research (C)