Research on the nonlinear elliptic eigenvalue problems by variational methods
非线性椭圆特征值问题的变分法研究
基本信息
- 批准号:12640211
- 负责人:
- 金额:$ 1.47万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2000
- 资助国家:日本
- 起止时间:2000 至 2001
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1. (1) We studied the nonlinear two-parameter problem -u"(x) + λu(x)^q = μu(x)^p,u(x) > 0,x ∈(0,1),u(0) = u(1) = 0. Here 1 < q < p are constants and λ,μ > 0 are parameters. We established precise asymptotic formulas with exact second term for variational eigencurve μ(λ) as λ→∞. We emphasize that the critical case concerning the decaying rate of the second term is p = (3q - 1)/2 and this kind of criticality is new.(2) We considered the nonlinear two-parameter problem u"(x) + μu(x)^p = λu(x)^q, u(x) > 0, x ∈ I = (0,1), u(0) = u(1) = 0, where 1 < q < p < 2q + 3 and λ,μ > 0 are parameters. We established the three-term spectral asymptotics for the eigencurve λ = λ(μ) as μ→∞ by using a variational method on the general level set due to Zeidler. The first and second terms of'λ(μ) do not depend on the relationship between p and q. However, the third term depends on the relationship between p and q, and the critical case is p = (3q-1)/2.2. We considered the nonlinear eigenvalue problem -Δu = λf(u), u > 0 in Ω,u = 0 on ?∂Ω, where Ω=B_R={x ∈ R^N : |x| <R} or A_<a,R> = {x ∈ R^N : a< |x| <R} (N【greater than or equal】2) and λ>0 is a parameter. It is known that under some conditions on f and g, the corresponding solution u_λ develops boundary layers when λ>> 1. We established the asymptotic formulas for the width of the boundary layers with exact second term and the estimate of the third term.3. We considered several elliptic partial differential equations and parabolic systems related to nonlinear eigenvalue problems and obtained some existence results and qualitative properties of the solutions.
1.(1)研究了两参数非线性问题-u“(X)+λu(X)^q=μu(X)^p,u(X)>;0,x∈(0,1),u(0)=u(1)=0。这里,1<;q<;p是常量,λ,μ>;0是参数。我们建立了变分特征曲线μ(λ)为λ→∞的精确的渐近公式。(2)我们考虑了两参数非线性问题u“(X)+μu(X)^p=λu(X)^q,u(X)>;0,x∈i=(0,1),u(0)=u(1)=0,其中1<;q<;p<;2q+3和λ,μ>;0是参数。我们利用Zeidler在一般水平集上的变分方法,建立了特征曲线λ=λ(μ的三项谱渐近性态为μ→∞。λ(μ)的第一项和第二项不依赖于p和q之间的关系,而第三项取决于p和q之间的关系,临界情况是p=(3q-1)/2.2.我们考虑了非线性特征值问题-Δu=λf(U),u>;0在Ω中,u=0 on?∂Ω,其中Ω=B_R={x∈R^N:|x|<;R}或A_<;a,R>;={x∈R^N:A<;|x|<;R}(N[大于或等于]2),λ>;0是参数。已知在f和g的某些条件下,相应的解u_λ在λ>;>;1中发展出边界层。我们建立了边界层宽度的渐近公式和第三项的估计。我们考虑了几个与非线性特征值问题有关的椭圆型偏微分方程组和抛物型方程组,得到了了解的一些存在性结果和定性性质。
项目成果
期刊论文数量(24)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tetsutaro Shibata: "Interior transition layers of solutions to the perturbed elliptic sine-Gordon equation on an interval"Journal d'Analyse Mathematique. 83. 109-120 (2001)
Tetsutaro Shibata:“区间上扰动椭圆正弦-戈登方程解的内部过渡层”Journal dAnalyse Mathematique。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Tetsutaro Shibata: "Interior transition layers of solutions to perturbed elliptic sine-Gordon equation on an interval"Journal d'Analyse Mathematique. (発表予定).
Tetsutaro Shibata:“区间上扰动椭圆正弦-戈登方程解的内部过渡层”Journal dAnalyse Mathematique(待出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Tetsutaro Shibata: "Asymptotic behavior of eigenvalues for two-parameter perturbed elliptic Sine-Gordon type equations"Results in Mathematics. 39. 155-168 (2001)
Tetsutaro Shibata:“二参数扰动椭圆正弦-戈登型方程的特征值的渐近行为”数学结果。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Tetsutaro Shibata: "Precise spectral asymptotics for nonlinear Sturm-Liouville problems"Journal of Differential Equations. (発表予定).
Tetsutaro Shibata:“非线性 Sturm-Liouville 问题的精确谱渐进”《微分方程杂志》(待出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Kazunaga Tanaka: "Periodic solutions for singular Hamiltonian systems and closed geodesics on non-compact Riemannian manifolds"Annales de l'Institut Henri Poincare. Analyse Non Lineaire. 17・1. 1-33 (2000)
Kazunaga Tanaka:“非紧黎曼流形上的奇异哈密顿系统和闭合测地线的周期解”Annales de lInstitut Henri Poincare 17・1(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHIBATA Tetsutaro其他文献
SHIBATA Tetsutaro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SHIBATA Tetsutaro', 18)}}的其他基金
Asymptotic analysis and inverse problems of the nonlinear elliptic eigenvalue problems
非线性椭圆特征值问题的渐近分析与反问题
- 批准号:
21540219 - 财政年份:2009
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis on the nonlinear elliptic eigenvalue problems
非线性椭圆特征值问题分析
- 批准号:
14540207 - 财政年份:2002
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Fast and accurate algorithms for solving large eigenvalue problems
用于解决大型特征值问题的快速准确的算法
- 批准号:
23K11226 - 财政年份:2023
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Novel Finite Element Methods for Nonlinear Eigenvalue Problems - A Holomorphic Operator-Valued Function Approach
非线性特征值问题的新颖有限元方法 - 全纯算子值函数方法
- 批准号:
2109949 - 财政年份:2023
- 资助金额:
$ 1.47万 - 项目类别:
Standard Grant
PRIMES: The Inverse Eigenvalue Problem for Graphs and Collaboration to Promote Inclusivity in Undergraduate Mathematics Education
PRIMES:图的反特征值问题和协作以促进本科数学教育的包容性
- 批准号:
2331072 - 财政年份:2023
- 资助金额:
$ 1.47万 - 项目类别:
Standard Grant
Study of high performance and accuracy eigenvalue solvers for quantum many-body systems
量子多体系统高性能、高精度特征值求解器研究
- 批准号:
22K12052 - 财政年份:2022
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies on the Behaviour of Eigenvalue Multiplicities Associated with Graphs
与图相关的特征值重数行为的研究
- 批准号:
575956-2022 - 财政年份:2022
- 资助金额:
$ 1.47万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Laplacian-eigenvalue maximization and minimal surface
拉普拉斯特征值最大化和最小曲面
- 批准号:
22H01122 - 财政年份:2022
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Invariants of gas and fluid flows and exact solutions to boundary eigenvalue problems
气体和流体流动的不变量以及边界特征值问题的精确解
- 批准号:
RGPIN-2022-03404 - 财政年份:2022
- 资助金额:
$ 1.47万 - 项目类别:
Discovery Grants Program - Individual
Fast and accurate eigenvalue calculations by hierarchical low-rank approximation and its application to large-scale electronic structure calculations
分层低阶近似快速准确的特征值计算及其在大规模电子结构计算中的应用
- 批准号:
22H03598 - 财政年份:2022
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Constructions of discrete integrable systems with eigenvalue preserving transformations and their asymptotic analysis
具有特征值保持变换的离散可积系统的构造及其渐近分析
- 批准号:
21K13844 - 财政年份:2021
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Sharp Eigenvalue Inequalities and Minimal Surfaces
锐特征值不等式和极小曲面
- 批准号:
2104254 - 财政年份:2021
- 资助金额:
$ 1.47万 - 项目类别:
Standard Grant














{{item.name}}会员




