Analysis on the nonlinear elliptic eigenvalue problems

非线性椭圆特征值问题分析

基本信息

  • 批准号:
    14540207
  • 负责人:
  • 金额:
    $ 2.18万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2002
  • 资助国家:
    日本
  • 起止时间:
    2002 至 2004
  • 项目状态:
    已结题

项目摘要

We studied nonlinear elliptic eigenvalue problems with several parameters. Our main concern was to clarify the asymptotic properties of eigenvalue parameters and associated eigenfunctions by using variational methods and singular perturbation approaches when a parameter was very large.We studied two-parameter ordinary differential equations with two pure power nonlinear terms. We established several asymptotic formulas for eigenvalues by using several variational approaches. We also studied the two-parameter problems which were related to the simple pendulum problems. We established the precise asymptotic formulas for the solutions with boundary layers when a parameter was very large under the Dirichlet boundary conditions. The formulas obtained here were totally different from those for the associated one-parameter simple pendulum problems.For problems with one-parameter, we studied the problems which were related to the simple pendulum problems. We first studied ordinary differential equations and established precise asymptotic formulas for the boundary layers when a parameter was large under the Dirichlet boundary conditions. We next extended this result to the nonlinear elliptic eigenvalue problems in a smooth bounded domain. We studied nonlinear elliptic eigenvalue problems with pure power nonlinearity and established the asymptotic formula for the eigenvalues in L-2 framework. We also treated the perturbed simple pendulum problems in a bounded domain. It is known that if parameter is large, then an associated solution is nearly flat inside the domain. We have succeeded to establish the precise asymptotic formulas for the interior behavior of the solutions to understand precisely how flat the solutions were inside a domain when a parameter was very large. The formulas obtained here were exactly represented by using the nonlinear term.
研究了具有多个参数的非线性椭圆型特征值问题。我们的主要工作是利用变分方法和奇异摄动方法来阐明当参数很大时特征值参数及其相关特征函数的渐近性质。我们研究了具有两个纯幂非线性项的两参数常微分方程解。我们用几种变分方法建立了几个特征值的渐近公式。我们还研究了与单摆问题相关的两参数问题。在Dirichlet边界条件下,建立了参数很大时边界层解的精确渐近公式。所得到的公式与相关的单参数单摆问题的公式完全不同。对于单参数问题,我们研究了与单参数单摆问题相关的问题。我们首先研究了常微分方程组,在Dirichlet边界条件下建立了参数较大时边界层的精确渐近公式。接下来,我们将这一结果推广到光滑有界域上的非线性椭圆型特征值问题。研究了具有纯幂非线性的非线性椭圆型特征值问题,在L-2框架下建立了特征值的渐近公式。我们还处理了有界域上的摄动单摆问题。已知,如果参数较大,则相关解在域内几乎是平坦的。我们已经成功地建立了解的内部行为的精确渐近公式,以便准确地了解当参数很大时,解在区域内是多么平坦。文中所得公式用非线性项精确表示。

项目成果

期刊论文数量(31)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Asymptotic expansion of the variational eigencurve for two-parameter simple pendulum type equations
二参数单摆型方程变分特征曲线的渐近展开
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T.Kobayashi;G.Hector;T.Shibata;T.Shibata;T.Shibata;T.Shibata;A.Bi's;T.Kobayashi;T.Shibata;T.Shibata;T.Shibata
  • 通讯作者:
    T.Shibata
Tetsutaro Shibata: "Asymptotic expansion of the boundary layers of the perturbed simple pendulum problems"Journal of Mathematical Analysis and Applications. 283. 431-439 (2003)
Tetsutaro Shibata:“扰动单摆问题边界层的渐近展开”数学分析与应用杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Kiyoshi Yoshida: "Self-similar solutions to a parabolic system modeling chemotaxis"journal of Differential Equations. 184・2. 386-421 (2002)
Kiyoshi Yoshida:“抛物线系统模拟趋化性的自相似解”微分方程杂志184・2(2002)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Tetsutaro Shibata: "The effect of the variational framework on the spectral asymptotics for two-parameter nonlinear eigenvalue problems"Mathematische Nachrichten. 248-249. 168-184 (2003)
Tetsutaro Shibata:“变分框架对二参数非线性特征值问题谱渐进的影响”Mathematische Nachrichten。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Three-term spectral asymptotics for the perturbed simple pendulum problems
扰动单摆问题的三项谱渐近
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T.Kobayashi;G.Hector;T.Shibata;T.Shibata;T.Shibata;T.Shibata;A.Bi's;T.Kobayashi;T.Shibata;T.Shibata
  • 通讯作者:
    T.Shibata
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SHIBATA Tetsutaro其他文献

SHIBATA Tetsutaro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SHIBATA Tetsutaro', 18)}}的其他基金

Asymptotic analysis and inverse problems of the nonlinear elliptic eigenvalue problems
非线性椭圆特征值问题的渐近分析与反问题
  • 批准号:
    21540219
  • 财政年份:
    2009
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on the nonlinear elliptic eigenvalue problems by variational methods
非线性椭圆特征值问题的变分法研究
  • 批准号:
    12640211
  • 财政年份:
    2000
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Fast and accurate algorithms for solving large eigenvalue problems
用于解决大型特征值问题的快速准确的算法
  • 批准号:
    23K11226
  • 财政年份:
    2023
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Novel Finite Element Methods for Nonlinear Eigenvalue Problems - A Holomorphic Operator-Valued Function Approach
非线性特征值问题的新颖有限元方法 - 全纯算子值函数方法
  • 批准号:
    2109949
  • 财政年份:
    2023
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Standard Grant
PRIMES: The Inverse Eigenvalue Problem for Graphs and Collaboration to Promote Inclusivity in Undergraduate Mathematics Education
PRIMES:图的反特征值问题和协作以促进本科数学教育的包容性
  • 批准号:
    2331072
  • 财政年份:
    2023
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Standard Grant
Study of high performance and accuracy eigenvalue solvers for quantum many-body systems
量子多体系统高性能、高精度特征值求解器研究
  • 批准号:
    22K12052
  • 财政年份:
    2022
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies on the Behaviour of Eigenvalue Multiplicities Associated with Graphs
与图相关的特征值重数行为的研究
  • 批准号:
    575956-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Laplacian-eigenvalue maximization and minimal surface
拉普拉斯特征值最大化和最小曲面
  • 批准号:
    22H01122
  • 财政年份:
    2022
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Invariants of gas and fluid flows and exact solutions to boundary eigenvalue problems
气体和流体流动的不变量以及边界特征值问题的精确解
  • 批准号:
    RGPIN-2022-03404
  • 财政年份:
    2022
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Discovery Grants Program - Individual
Fast and accurate eigenvalue calculations by hierarchical low-rank approximation and its application to large-scale electronic structure calculations
分层低阶近似快速准确的特征值计算及其在大规模电子结构计算中的应用
  • 批准号:
    22H03598
  • 财政年份:
    2022
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Constructions of discrete integrable systems with eigenvalue preserving transformations and their asymptotic analysis
具有特征值保持变换的离散可积系统的构造及其渐近分析
  • 批准号:
    21K13844
  • 财政年份:
    2021
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Sharp Eigenvalue Inequalities and Minimal Surfaces
锐特征值不等式和极小曲面
  • 批准号:
    2104254
  • 财政年份:
    2021
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了