New results in stochastic homogenization of variational models
变分模型随机均质化的新结果
基本信息
- 批准号:530813503
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The aim of the project is the stochastic homogenization in the sense of almost sure gamma convergence of selected functionals in the calculus of variations. In doing so, either assumptions in existing results are significantly weakened or we investigate models for which there have been no considerations in the sense of stochastic homogenization so far. The work can be divided into four independent subprojects: 1) Ferromagnetic Ising systems with degenerate stationary interaction coefficients, 2) The ferromagnetic XY model on stochastic lattices, 3) Models with stochastic homogeneity on manifolds, 4) Stochastic homogenization in (static) nonlinear elasticity. In 1), existing results are improved in the sense that the interaction weights between two magnetic particles no longer need to be bounded from above, but only need to satisfy minimal stochastic integrability assumptions. In project 2), vortex-like topological singularities for randomly arranged spin particles are studied. For the given XY-model, no result on gamma-convergence in the context of homogenization (neither periodic nor stationary, ergodic) exists yet. Project 3) is devoted to the definition of a suitable stationarity notion on manifolds, which allows to consider relevant models for polymer networks and their homogenization also on curved surfaces. In the last project 4) we try to prove first partial results for the stochastic homogenization of energies in nonlinear elasticity theory. In particular, we show that the multi-cell formula from standard homogenization theory provides an upper bound for the Gamma-limit. Each of the projects has numerous possibilities for generalization up to very abstract considerations of energy functionals on integral currents or to a full gamma convergence result in nonlinear elasticity.
这个项目的目的是在变分中所选泛函的几乎必然伽玛收敛的意义上的随机齐化。在这样做的时候,要么现有结果中的假设被显著削弱,要么我们研究的模型到目前为止还没有在随机齐化意义上考虑。这项工作可以分为四个独立的子项目:1)具有简并的平稳相互作用系数的铁磁Ising系统,2)随机晶格上的铁磁XY模型,3)流形上的随机齐次模型,4)(静态)非线性弹性的随机齐次化。在1)中,改进了已有的结果,即两个磁性粒子之间的相互作用权重不再需要从上面有界,而只需要满足最小随机可积性假设。在方案2)中,研究了随机排列的自旋粒子的类涡旋拓扑奇性。对于给定的XY模型,在齐化(既不是周期的,也不是平稳的,遍历的)背景下,还没有关于Gamma收敛的结果。项目3)致力于定义流形上适当的平稳性概念,它允许考虑聚合物网络的相关模型及其在曲面上的齐次化。在最后一个方案4)中,我们试图证明非线性弹性理论中能量随机齐化的第一个部分结果。特别地,我们证明了来自标准齐化理论的多胞公式提供了Gamma极限的一个上界。每个项目都有许多可能性,可以推广到关于积分电流的能量泛函的非常抽象的考虑,或者到导致非线性弹性的完全伽马收敛。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr. Matthias Ruf其他文献
Dr. Matthias Ruf的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Bilingualism as a cognitive reserve factor: the behavioral and neural underpinnings of cognitive control in bilingual patients with aphasia
双语作为认知储备因素:双语失语症患者认知控制的行为和神经基础
- 批准号:
10824767 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Integrating Hamiltonian Effective Field Theory with Lattice QCD and Experimental Results to study Heavy Exotic Hadron Spectroscopy
哈密顿有效场论与晶格 QCD 和实验结果相结合,研究重奇异强子谱
- 批准号:
24K17055 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
The Moral Experience of Families in the Context of Trisomy 13 and 18: Presenting the Results of a Scoping Review
13 号和 18 号三体症背景下家庭的道德体验:介绍范围界定审查的结果
- 批准号:
495166 - 财政年份:2023
- 资助金额:
-- - 项目类别:
The Common Fund Knowledge Center (CFKC): providing scientifically valid knowledge from the Common Fund Data Ecosystem to a diverse biomedical research community.
共同基金知识中心(CFKC):从共同基金数据生态系统向多元化的生物医学研究社区提供科学有效的知识。
- 批准号:
10851461 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Brain Mechanisms of Chronic Low-Back Pain: Specificity and Effects of Aging and Sex
慢性腰痛的脑机制:衰老和性别的特异性和影响
- 批准号:
10657958 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Customizable Artificial Intelligence for the Biomedical Masses: Development of a User-Friendly Automated Machine Learning Platform for Biology Image Analysis.
面向生物医学大众的可定制人工智能:开发用于生物图像分析的用户友好的自动化机器学习平台。
- 批准号:
10699828 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Understanding Risk Heterogeneity Following Child Maltreatment: An Integrative Data Analysis Approach.
了解虐待儿童后的风险异质性:综合数据分析方法。
- 批准号:
10721233 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Investigating the link between REV-ERB and HIF-1a in Th17 cell function
研究 Th17 细胞功能中 REV-ERB 和 HIF-1a 之间的联系
- 批准号:
10721581 - 财政年份:2023
- 资助金额:
-- - 项目类别:
ShEEP Request for the purchase of a research- grade Cell Imaging Multi-mode Reader
ShEEP 请求购买研究级细胞成像多模式读取器
- 批准号:
10739194 - 财政年份:2023
- 资助金额:
-- - 项目类别:














{{item.name}}会员




