SpaceAnts: Algorithmic Foundations for Constructing and Reconfiguring LargeScale Structures with Simple Robots
SpaceAnts:使用简单机器人构建和重新配置大型结构的算法基础
基本信息
- 批准号:530918134
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Building and modifying structures consisting of many basic components is an important and natural objective in a vast array of applications. In many cases, the use of autonomous robots promises significant advantages, but also faces numerous additional complications. This applies to a wide spectrum of scenarios, but it is particularly true at both very large and very small dimensions that are hard to access for direct human manipulation, e.g., in extraterrestrial space or in microscopic environments. In recent years, significant advances have been made to facilitate overall breakthroughs, Firstly, ultralight and scalable composite lattice materials allow the construction of modular, reconfigurable, lattice-based structures; their cellular structure also resolves issues of accuracy and error correction, allowing it to focus on the underlying discrete, combinatorial structures. Secondly the development of simple autonomous robots enables using large numbers to carry out complex tasks, both at microscopic and macroscopic dimensions. In this project, we address the next step in this hierarchy: How can we enable a collective of robots to master a spectrum of construction tasks that are based on cellular structures, such as building, maintaining and reconfiguring constructions consisting of a large number of basic components? Achieving scalability hinges on parallelism between large numbers of such simple robots, combining algorithmic mechanisms for distributed coordination with optimization methods that address a variety of geometric aspects. In the proposed work, we aim to lay the foundations for handling these challenges without relying on robots of tremendous individual powers. Instead, we will develop algorithmic methods for coordinating large swarms of autonomous robots of limited individual capabilities that together are able to build, maintain and reconfigure large structures. These structures may consist of ultralight, modular, lattice-based components, that may be formed by (possibly microscopic) robots themselves, or constructed with the help of micro factories. Special attention will be given to the combination of distributed and centralized methods: Central control over all detailed aspects of construction and reconfiguration is neither possible nor necessary, so the development of distributed mechanisms is crucial for the overall functioning of the resulting systems; on the other hand, it is both unnecessary and undesirable to completely abandon all features of global control. While our own aim is for algorithmic methods for these challenges, with a focus on theoretical foundations, context and real-world realization will be provided through close collaboration with a number of award-winning international colleagues who combine expertise in a spectrum of relevant areas.
构建和修改由许多基本组件组成的结构是大量应用中的重要和自然目标。在许多情况下,自主机器人的使用具有显著的优势,但也面临许多额外的复杂性。这适用于广泛的场景,但在很大和很小的维度上都是如此,这些维度很难直接进行人工操作,例如,在地外太空或微观环境中。近年来,在促进整体突破方面取得了重大进展,首先,超轻和可扩展的复合晶格材料允许构建模块化,可重构,基于晶格的结构;它们的蜂窝结构还解决了准确性和纠错问题,使其能够专注于底层的离散组合结构。其次,简单的自主机器人的发展使大量的机器人能够在微观和宏观层面上执行复杂的任务。在这个项目中,我们解决了这个层次结构中的下一步:我们如何使机器人集体掌握一系列基于细胞结构的建筑任务,例如建造,维护和重新配置由大量基本组件组成的建筑?实现可扩展性取决于大量此类简单机器人之间的并行性,将分布式协调的算法机制与解决各种几何方面的优化方法相结合。在拟议的工作中,我们的目标是为应对这些挑战奠定基础,而不依赖于具有巨大个人能力的机器人。相反,我们将开发算法方法,用于协调大量个体能力有限的自主机器人,这些机器人能够共同构建,维护和重新配置大型结构。这些结构可能由超轻、模块化、基于网格的组件组成,这些组件可能由(可能是微观的)机器人自己形成,或者在微型工厂的帮助下建造。将特别注意分布式和集中式方法的结合:集中控制的所有详细方面的建设和重新配置是既不可能也不必要的,因此分布式机制的发展是至关重要的整体功能的系统;另一方面,这是不必要的和不可取的完全放弃所有功能的全球控制。虽然我们自己的目标是为这些挑战的算法方法,重点是理论基础,背景和现实世界的实现将通过与一些获奖的国际同事谁联合收割机专业知识在相关领域的频谱密切合作提供。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Sándor Fekete其他文献
Professor Dr. Sándor Fekete的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Sándor Fekete', 18)}}的其他基金
RoboRithmics: Algorithmische und praktische Methoden zur Steuerung eines autonomen Explorationsroboters
RoboRithmics:控制自主探索机器人的算法和实用方法
- 批准号:
48145152 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Priority Programmes
Self-organizing and self-regulating coordination of a large swarm of self-navigating autonomous vehicles as occuring in traffic
交通中出现的一大群自导航自动驾驶车辆的自组织和自调节协调
- 批准号:
5453754 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Priority Programmes
Algorithmen und Protokolle für dezentrale Vernetzung und Betrieb großer Ad-hoc-Netzwerke ohne den Gebrauch von Lokalisationshardware
用于去中心化网络和大型自组织网络操作的算法和协议,无需使用本地化硬件
- 批准号:
5415825 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Priority Programmes
ReCoNodes-Optimierungsmethodik zur Steuerung hardwarekonfigurierbarer Knoten
用于控制硬件可配置节点的 ReCoNodes 优化方法
- 批准号:
5408155 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Priority Programmes
Computational Geometry:Solving Hard Optimization Problems (CG:SHOP)
计算几何:解决硬优化问题 (CG:SHOP)
- 批准号:
444569951 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343599 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343600 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Scalable Quantum Machine Learning with NISQ Devices: Theoretic and Algorithmic Foundations
使用 NISQ 设备的可扩展量子机器学习:理论和算法基础
- 批准号:
2882984 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Collaborative Research: CIF: Medium: Statistical and Algorithmic Foundations of Distributionally Robust Policy Learning
合作研究:CIF:媒介:分布式稳健政策学习的统计和算法基础
- 批准号:
2312205 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Socio-Algorithmic Foundations of Trustworthy Recommendations
职业:值得信赖的推荐的社会算法基础
- 批准号:
2239194 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: CIF: Medium: Statistical and Algorithmic Foundations of Distributionally Robust Policy Learning
合作研究:CIF:媒介:分布式稳健政策学习的统计和算法基础
- 批准号:
2312204 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: CIF: Medium: Statistical and Algorithmic Foundations of Efficient Reinforcement Learning
合作研究:CIF:媒介:高效强化学习的统计和算法基础
- 批准号:
2221009 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: CNS Core: Small: Edge AI with Streaming Data: Algorithmic Foundations for Online Learning and Control
合作研究:中枢神经系统核心:小型:具有流数据的边缘人工智能:在线学习和控制的算法基础
- 批准号:
2225950 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Edge AI with Streaming Data: Algorithmic Foundations for Online Learning and Control
合作研究:中枢神经系统核心:小型:具有流数据的边缘人工智能:在线学习和控制的算法基础
- 批准号:
2225949 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Theoretical and Algorithmic Foundations of Variational Bayesian Inference
合作研究:变分贝叶斯推理的理论和算法基础
- 批准号:
2210717 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant