Historical and Logical Investigation into Hilbert Program as a philosophy of mathematics
作为数学哲学的希尔伯特纲领的历史和逻辑研究
基本信息
- 批准号:13610014
- 负责人:
- 金额:$ 1.41万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2001
- 资助国家:日本
- 起止时间:2001 至 2002
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this research project, we aimed at the explication of the following two points; how is the rela-tion between the so-called Hilbert program and Godel's second incompleteness theorem and how did Brouwer's criticism against Hilbert exert an influence on the historical development of Hilbert program. As a result, first of all we could show that the official view which said that Hilbert pro-gram faild because of Godel's second incompleteness theorem would not critically demonstrated. This result is based on Michael Detlefsen's prior research. But what we should derive from this result is not simply the revival of Hilbert program but the insight that Godel's second incom-pleteness theorem would be concerned with the problem of intensionality, that is, the fundamental problem of discripancy between linguistic (or formal) expressions and what we mean by them. Sec-ondly, we could show that Brouwer's criticism against Hilbertian formalism, especially Brouwer's criticism of the linguistic methods in mathematics, was fundamentally important in the process of sophistication of Hilbert's finitism. It should be noted that many strategies of Hilbert program are interpretable as responces to Brouwer's criticism.
本研究项目的目的是阐明所谓的希尔伯特纲领与哥德尔第二不完备性定理之间的关系以及布劳威尔对希尔伯特纲领的批评对希尔伯特纲领的历史发展产生了怎样的影响。因此,首先,我们可以证明,希尔伯特程序失败是由于哥德尔第二不完全性定理的官方观点不会被批判地证明。这一结果是基于Michael Detlefsen之前的研究。但是我们从这个结果中得到的不仅仅是希尔伯特纲领的复兴,而是要认识到哥德尔第二不完备性定理将涉及内涵问题,即语言(或形式)表达式与我们所指的内容之间的区分的基本问题。其次,我们可以看到,布劳威尔对希尔伯特形式主义的批判,特别是布劳威尔对数学中语言方法的批判,在希尔伯特有限论的完善过程中起着根本性的重要作用。应该指出的是,希尔伯特程序的许多策略可以解释为对布劳威尔批评的回应。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hiroshi KANEKO: "Brouwer's Conception on Language, Mind and Mathematics"Annals of the Japan Association for Philosophy of Science. Vol.11No.1. (2003)
金子浩:《布劳威尔关于语言、心灵和数学的构想》日本科学哲学协会年鉴。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
金子洋之: "ブラウワーにおける言語と数学"日本科学哲学会『科学哲学』. 34-1. 21-35 (2001)
Hiroyuki Kaneko:“Brouwer 中的语言和数学”日本科学哲学会 34-1(2001)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Hiroshi Kaneko: "'Hilbert's Program and Incompleteness Theorems-A survey of works of Michael Detlefsen'"Ikiita-Tetsugaku. No.7. 46-73 (2002)
Hiroshi Kaneko:“‘希尔伯特纲领和不完备性定理-迈克尔·德特勒夫森作品综述’”Ikiita-Tetsugaku。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KANEKO Hiroshi其他文献
KANEKO Hiroshi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KANEKO Hiroshi', 18)}}的其他基金
Elucidation of the diversity of target genes in GATA1
阐明GATA1中靶基因的多样性
- 批准号:
24890015 - 财政年份:2012
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Drug development for osteoarthritis(OA) by drug screening for transcriptional activation of SOX9
通过 SOX9 转录激活药物筛选来开发骨关节炎 (OA) 药物
- 批准号:
22659270 - 财政年份:2010
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Reconstructionof a semanticsbased on the notion of proof
基于证明概念的语义重构
- 批准号:
22520032 - 财政年份:2010
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Low Temperature x-ray diffraction study on phase transition
相变的低温X射线衍射研究
- 批准号:
19540363 - 财政年份:2007
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Philosophical and Historical research into varieties of Constructivism in Logic and Mathematics
对逻辑和数学中各种建构主义的哲学和历史研究
- 批准号:
18520025 - 财政年份:2006
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis on Pathophysiology of Functional Gastrointestinal Disorders (FGIDs) and Establishment of Comprehensive Evaluation Methods and Treatment of FGIDs
功能性胃肠病(FGIDs)的病理生理学分析及FGIDs综合评估方法和治疗方法的建立
- 批准号:
15590608 - 财政年份:2003
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on Brouwer's Philosophy and the notion of continuum in Intuitionism
布劳威尔哲学与直觉主义连续统概念研究
- 批准号:
15520026 - 财政年份:2003
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigation into relations between realism and constructivism in the philosophy of mathematics
数学哲学中实在论与建构主义关系探讨
- 批准号:
06610013 - 财政年份:1994
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
Pathophysiology of MNMS due to acute arterial occlusion and development of a local perfusion
急性动脉闭塞和局部灌注引起的 MNMS 的病理生理学
- 批准号:
02454302 - 财政年份:1990
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)
相似海外基金
Challenge on data driven research foundation by merging formalism and AI
形式主义与人工智能融合对数据驱动研究基础的挑战
- 批准号:
23K17520 - 财政年份:2023
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
A stochastic formalism for tensor perturbations: gravitational waves induced by non-linear effects
张量扰动的随机形式主义:非线性效应引起的引力波
- 批准号:
23KF0247 - 财政年份:2023
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Hamiltonian formalism in wave turbulence problems
波湍流问题中的哈密顿形式主义
- 批准号:
2307712 - 财政年份:2023
- 资助金额:
$ 1.41万 - 项目类别:
Standard Grant
Thermodynamic Formalism and Dimension of Overlapping Fractal Measures
热力学形式主义和重叠分形测度的维数
- 批准号:
2905612 - 财政年份:2022
- 资助金额:
$ 1.41万 - 项目类别:
Studentship
The best bureaucrat knows how to act. An ethnographic research on 'Chinese formalism' in bureaucratic institutions
最好的官僚知道如何行事。
- 批准号:
2754939 - 财政年份:2022
- 资助金额:
$ 1.41万 - 项目类别:
Studentship
Topics in Smooth Ergodic Theory: Stochastic Properties, Thermodynamic Formalism, Coexistence
平滑遍历理论主题:随机性质、热力学形式主义、共存
- 批准号:
2153053 - 财政年份:2022
- 资助金额:
$ 1.41万 - 项目类别:
Standard Grant
Many-Body Perturbation Formalism and Computational Prediction of Exciton Dynamics in Low-Dimensional Quantum Moiré Materials
低维量子莫尔材料中激子动力学的多体摄动形式主义和计算预测
- 批准号:
568202-2022 - 财政年份:2022
- 资助金额:
$ 1.41万 - 项目类别:
Postgraduate Scholarships - Doctoral
Applying large eddy simulation to dissipative particle dynamics modeling toward better understanding of complex flow phenomena
将大涡模拟应用于耗散粒子动力学建模,以更好地理解复杂的流动现象
- 批准号:
22K03904 - 财政年份:2022
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Aspects of the evolution dynamics of GR in the chiral formalism
手性形式主义中 GR 演化动力学的各个方面
- 批准号:
2601065 - 财政年份:2021
- 资助金额:
$ 1.41万 - 项目类别:
Studentship
Quantum circuit extraction from the Sum-over-Paths formalism
从路径求和形式中提取量子电路
- 批准号:
565041-2021 - 财政年份:2021
- 资助金额:
$ 1.41万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's














{{item.name}}会员




