Integrable geodesic flows and Masloy's quantization condition
可积测地线流和 Masloy 量子化条件
基本信息
- 批准号:13640054
- 负责人:
- 金额:$ 2.5万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2001
- 资助国家:日本
- 起止时间:2001 至 2002
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We constructed a continuous family of riemanninan metrics on 2-sphere whose geodesic flows possess first integrals of fiber-degree k, for every k greater than 2. They are the first examples, exect the cases where k=3,4, due to Bolsinov and Fomenko. Moreover, the constructed manifolds have the property that every geodesic is closed. Therefore they are conrete examples of the manifolds that Guillemin showed their existence in an abstract manner.We also investigated the structures of Kahler-Liouville manifolds of general type, I.e., not necessarlly of type (A). As a consequence, we showed that every compact, proper Kahler-Liouville manifold has a bundle structure such that the fiber is a Kahler-Liouville manifold whose geodesic flow is integrable, and the base is (locally) a product of one-dimensional Kahler manifolds. Also, we obtain another class, called of type (B), of Kahler-Liouville manifolds whose geodesic flows are integrable. This class had already appeared in the study of fiber bundle structure of type (A) manifolds, but we now obtained its intrinsic definition.Also, we investigated local structures of Hermite-Liouville manifolds and basically clarifled them. Moreover, we construct the structure of Hermite-Liouville manifolds on complex projective spaces. The way of construction is similar to that of a Kahler-Liouvlle manifold, I.e., a complexification of a real Liouville manifold. However, in the Hermite case, plural Liouville manifolds produce one Hermite-Liouville manifold. Therefore, we obtain quite many examples of integrable geodesic flows in this way.
我们在2个球体上构建了一个连续的riemanninan量子,其测量流具有纤维度k的第一积分,每一个大于2。它们是第一个示例。此外,构造的歧管具有关闭每个测量的属性。因此,它们是Guillemin以抽象的方式表现出其存在的歧管的例子。我们还研究了一般类型的Kahler-Liouville歧管的结构,即不必要(a)类型。结果,我们表明,每个紧凑的,适当的Kahler-Liouville歧管都有一个捆扎结构,因此纤维是Kahler-Liouville的歧管,其地理流量是可集成的,并且基部是(本地)一维Kahler歧管的产物。另外,我们获得了Kahler-Liouville歧管的另一个称为(b)类型的类别,其大地歧管是可以集成的。该类别已经出现在(a)类型类型的纤维束结构的研究中,但是我们现在获得了其内在的定义。此外,我们研究了Hermite-liouville歧管的局部结构,并基本上澄清了它们。此外,我们在复杂的投影空间上构建了Hermite-Liouville歧管的结构。构建方式类似于Kahler-liouvlle歧管的构造方式,即对真实的Liouville歧管的复杂化。然而,在赫米特案中,复数liouville流形产生了一个Hermite-liouville歧管。因此,我们以这种方式获得了许多可集成的大地测量流的示例。
项目成果
期刊论文数量(24)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
S.Izumiya: "Singularities of ruled surfacis in R^3"Math.Proc.Camb.Phil.Soc.. 130. 1-11 (2001)
S.Izumiya:“R^3 中直纹曲面的奇异性”Math.Proc.Camb.Phil.Soc.. 130. 1-11 (2001)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Kiyohara: "On Kahler-Liouville manifolds"Contemp. Math.. 308. 211-222 (2002)
K.Kiyohara:“论卡勒-刘维尔流形”Contemp。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
G.Ishikawa: "Lagrange mappings of the first open Whitney umbrella"Pacific J.Math.. 203. 115-138 (2002)
G.Ishikawa:“第一张打开惠特尼伞的拉格朗日映射”Pacific J.Math.. 203. 115-138 (2002)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Kiyohara: "Two-dimensional geodesic flows having first integrals of higher degree"Math.Annalen. 320. 487-505 (2001)
K.Kiyohara:“具有更高阶第一积分的二维测地线流”Math.Annalen。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
S.Izumiya: "Multivalued solutions to the eikonal equation in stratified media"Quarterly of applied math.. 54. 365-390 (2001)
S.Izumiya:“分层介质中的 eikonal 方程的多值解”应用数学季刊 54. 365-390 (2001)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KIYOHARA Kazuyoshi其他文献
KIYOHARA Kazuyoshi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KIYOHARA Kazuyoshi', 18)}}的其他基金
Various problems concerning integrable geodesic flows
有关可积测地流的各种问题
- 批准号:
23540089 - 财政年份:2011
- 资助金额:
$ 2.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of various problems related to integrable geodesic flows
与可积测地流相关的各种问题的发展
- 批准号:
20540077 - 财政年份:2008
- 资助金额:
$ 2.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Problems related to integrable geodesic flows
与可积测地流相关的问题
- 批准号:
18540087 - 财政年份:2006
- 资助金额:
$ 2.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Integrable geodesic flows and related problems
可积测地流及相关问题
- 批准号:
16540069 - 财政年份:2004
- 资助金额:
$ 2.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Integrable geodesic flows and semi-classical approximations
可积测地线流和半经典近似
- 批准号:
11640053 - 财政年份:1999
- 资助金额:
$ 2.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Classical theory and quantization on integrable geodesic flows
可积测地流的经典理论和量化
- 批准号:
09640082 - 财政年份:1997
- 资助金额:
$ 2.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似国自然基金
动态可重构系统高级合成的集成化设计技术研究
- 批准号:60266003
- 批准年份:2002
- 资助金额:7.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Pluriharmonic maps into a compact symmetric space and integrable systems
多谐波映射到紧对称空间和可积系统
- 批准号:
22K03293 - 财政年份:2022
- 资助金额:
$ 2.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on Defects in Supersymmetric Theories via Relation with Integrable System
通过与可积系统的关系研究超对称理论的缺陷
- 批准号:
20K03935 - 财政年份:2020
- 资助金额:
$ 2.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Bosonization of quantum W superalgebra and its application to integrable system
量子W超代数的玻色化及其在可积系统中的应用
- 批准号:
19K03509 - 财政年份:2019
- 资助金额:
$ 2.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Application of Abelian function theory to Integrable system
阿贝尔函数理论在可积系统中的应用
- 批准号:
16K05187 - 财政年份:2016
- 资助金额:
$ 2.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
integrable system and moduli theory of derived category
可积系统与派生范畴模论
- 批准号:
26400043 - 财政年份:2014
- 资助金额:
$ 2.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)