Study of the mathematical foundation of energy level statistics.

能级统计数学基础的研究。

基本信息

  • 批准号:
    13640100
  • 负责人:
  • 金额:
    $ 2.18万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2001
  • 资助国家:
    日本
  • 起止时间:
    2001 至 2002
  • 项目状态:
    已结题

项目摘要

1. The definition of one-dimensional Schrodinger operators with singular potentials and its application to random systems : In 1994, H.P. McKean considered the Schrodinger operator with white noise potential on a finite interval, and investigated the probability distribution of its first eigenvalue, but did not mention the fundamental question of the definition of operators with singular potentials like white noise. The formulation of a Schrodinger operator which has as its potential the formal derivative of a continuous function had been already given by Fukushima, Nakao and Minami. But each of their methods had some technical dificulty when applied to the present situation. In our study, we found that the recent concise formulation due to Savchuk and Shkalikov (1999) is effective for our purpose. In particular, their notion of "quasi-derivative "enabled us to prove the Sturm's oscillation theorem needed in filling the gap in McKean's theory. This work was done in collaboration with K. Nagai.2. The distribution of the number of vertices of a Galton-Watson tree : As is shown e.g. the recent work by A. Khourunzhy (Adv. In Appl. Probab. Vol.33, No.l (2001) 124-140), one needs to count the number of vertices of random trees in order to study the fluctuation of the spectrum of random matrices. On the other hand, random trees are obtained as the trajectory of a Galton- Watson process (a discrete time branching process). We shall call this type of trees the Galton-Watson trees. Continuing the pioneering work of R. Otter (1949), we obtained some new results on the number of vertices of Galton- Watson trees.
1.一维奇异势Schrodinger算子的定义及其在随机系统中的应用:1994年,H. P. McKean考虑了有限区间上的白色噪声势Schrodinger算子,并研究了其第一特征值的概率分布,但没有提到像白色噪声那样的奇异势算子的定义的基本问题。福岛、中尾和南已经给出了以连续函数的形式导数为势的薛定谔算子的公式。但每一种方法在应用于实际情况时都存在一定的技术困难。在我们的研究中,我们发现Savchuk和Shkalikov(1999)最近提出的简明公式对我们的目的是有效的。特别是,他们的概念“准导数“使我们能够证明斯特姆的振荡定理需要填补差距在麦基恩的理论。这项工作是与K合作完成的。永井2号。Galton-Watson树的顶点数分布:如A. Khourunzhy(Adv. In Appl. Probab. Vol.33,No.1(2001)124-140),为了研究随机矩阵谱的涨落,需要计算随机树的顶点数。另一方面,随机树作为Galton-沃森过程(离散时间分支过程)的轨迹而获得。我们称这种树为高尔顿-沃森树。继续R. Otter(1949)中,我们得到了关于Galton-沃森树顶点数的一些新结果。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
N.Minami (with T.Hiratsuka): "Derivation of Wigner's semi-circle law for a class of matrix ensemble via Brownian motion"Tsukuba J. Math.. Vol.25,No.2. 442-464 (2001)
N.Minami(与 T.Hiratsuka):“通过布朗运动推导一类矩阵系综的维格纳半圆定律”Tsukuba J. Math.. Vol.25,No.2。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Akahira, M.: "Confidence intervals for the difference of means ; application to the Behcens-Fisher type problem"Statist. Papers. 43・2. 273-284 (2002)
Akahira, M.:“均值差异的置信区间;Behcens-Fisher 型问题的应用”,Statist 论文 43・2。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
S. Doi, A. Iwatsuka, T. Mine: "The uniqueness of the integrated density of states for the Schroedinger operators with magnetic fields"Mathematische Zeitschrift. Vol.237 No.2. 335-371 (2001)
S. Doi、A. Iwatsuka、T. Mine:“具有磁场的薛定谔算子的积分态密度的唯一性”Mathematische Zeitschrift。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M.Aoshima (with Y.Takada, M.S.Srivastava): "A two-stage procedure for estimating a linear function of k multinomial mean vectors when covariance matrices are known"Journal of Statistical Planning and Infernce. Vol.100. 109-119 (2002)
M.Aoshima(与 Y.Takada、M.S.Srivastava):“当协方差矩阵已知时,用于估计 k 多项式均值向量的线性函数的两阶段程序”统计规划与推理杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MINAMI Nariyuki其他文献

MINAMI Nariyuki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MINAMI Nariyuki', 18)}}的其他基金

Spectral theory for generalized Sturm-Liouville operators and its randomization
广义Sturm-Liouville算子的谱论及其随机化
  • 批准号:
    19K03526
  • 财政年份:
    2019
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Distribution of eigenvalues of random operators and related limit theorems
随机算子特征值分布及相关极限定理
  • 批准号:
    26400148
  • 财政年份:
    2014
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of spectral statistics for random operators in the framework of stationary point process theory
驻点过程理论框架下随机算子谱统计研究
  • 批准号:
    22540205
  • 财政年份:
    2010
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of the fluctuation of spectra of random operators
随机算子谱涨落的研究
  • 批准号:
    17540100
  • 财政年份:
    2005
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Probabilistic and statistical approach to spectra of quantum Hamiltonians.
量子哈密顿量谱的概率和统计方法。
  • 批准号:
    09640241
  • 财政年份:
    1997
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Understanding spectral statistics and dynamics in strongly-interacting quantum many-body systems
了解强相互作用量子多体系统中的光谱统计和动力学
  • 批准号:
    EP/X042812/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Fellowship
Spectral statistics for random hyperbolic surfaces
随机双曲曲面的谱统计
  • 批准号:
    EP/W007010/1
  • 财政年份:
    2022
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Research Grant
Mesoscopic Spectral Statistics of Sample Covariance Matrices
样本协方差矩阵的介观谱统计
  • 批准号:
    576095-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Semiclassical Approach to Spectral Statistics of Interacting Quantum Many-Body Systems
相互作用量子多体系统谱统计的半经典方法
  • 批准号:
    402552305
  • 财政年份:
    2018
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Research Grants
Study of spectral statistics for random operators in the framework of stationary point process theory
驻点过程理论框架下随机算子谱统计研究
  • 批准号:
    22540205
  • 财政年份:
    2010
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Semiclassics beyond the diagonal approximation - spectral statistics and mesoscopic quantum phenomena
超越对角线近似的半经典——光谱统计和介观量子现象
  • 批准号:
    5330826
  • 财政年份:
    2001
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了