Study of the fluctuation of spectra of random operators

随机算子谱涨落的研究

基本信息

项目摘要

In this project, we made a general approach to the statistical fluctuation of spectra of random operators from the viewpoint of point process theory, and at the same time, studied the level statistics for a concrete random Schrodinger operator In addition to these researches, we made a probabilistic investigation of random trees, a study motivated by questions of estimating traces of random matrices. Main results are the followings:1. A mathematical formulation was made of the notion of "unfolding' which is a procedure of normalizing the spectrum of a random operator, so that it can be viewed as a typical realization of a stationary point process.2. An attempt was made to prove that the unfolded spectrum of the discrete random Schrodinger operator looks like a typical realization of the Poisson point process, and it was clarified that the proof boils down to estimating the probability that two disjoint intervals simultaneously contain eigenvalues of the operator. However, because of the difficulty in obtaining this estimate, the whole proof is still incomplete.3. Concerning a class of random trees obtained as trajectories of discrete time branching processes, a local limit theorem was obtained for the number of vertices having k children for k=0, 1, 2, .4. A general extension theorem was obtained for the construction of a probability measure on the space of trees whose vertices have "marks" representing for example spatial location, age, types etc. of vertices.
在这个项目中,我们从点过程理论的角度对随机算子谱的统计涨落提出了一般性的方法,同时研究了具体随机薛定谔算子的能级统计。除了这些研究之外,我们还对随机树进行了概率研究,这项研究的动机是估计随机矩阵迹的问题。主要结果如下: 1.对“展开”的概念进行了数学表述,“展开”是随机算子谱归一化的过程,因此可以将其视为驻点过程的典型实现。2.尝试证明离散随机薛定谔算子的展开谱看起来像泊松点过程的典型实现,并澄清了证明归结为估计两个概率 不相交的区间同时包含算子的特征值。然而,由于获得这个估计的困难,整个证明仍然不完整。 3.关于作为离散时间分支过程的轨迹获得的一类随机树,对于具有 k 个子节点(k=0,1,2,.4)的顶点数量获得局部极限定理。获得了用于构造概率测度的一般可拓定理 在其顶点具有代表例如顶点的空间位置、年龄、类型等的“标记”的树的空间上。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sequential interval estimation of a location parameter with the fixed width in the uniform distribution with an unknown scale parameter
未知尺度参数的均匀分布中固定宽度位置参数的顺序区间估计
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yokura;S.;Masafumi Akahira and Ken-ichi Koike
  • 通讯作者:
    Masafumi Akahira and Ken-ichi Koike
Correlation functions for random involutions
随机对合的相关函数
ランダム媒質中のランダムウォークの片側滞在時間
随机介质中随机游动的单侧停留时间
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    渡辺信三;笠原勇二
  • 通讯作者:
    笠原勇二
Distribution of localization centers in some random systems
一些随机系统中定位中心的分布
Energy level statistics for random operators
随机算子的能量水平统计
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuki;Suzuki;Nariyuki Minami
  • 通讯作者:
    Nariyuki Minami
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MINAMI Nariyuki其他文献

MINAMI Nariyuki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MINAMI Nariyuki', 18)}}的其他基金

Spectral theory for generalized Sturm-Liouville operators and its randomization
广义Sturm-Liouville算子的谱论及其随机化
  • 批准号:
    19K03526
  • 财政年份:
    2019
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Distribution of eigenvalues of random operators and related limit theorems
随机算子特征值分布及相关极限定理
  • 批准号:
    26400148
  • 财政年份:
    2014
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of spectral statistics for random operators in the framework of stationary point process theory
驻点过程理论框架下随机算子谱统计研究
  • 批准号:
    22540205
  • 财政年份:
    2010
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of the mathematical foundation of energy level statistics.
能级统计数学基础的研究。
  • 批准号:
    13640100
  • 财政年份:
    2001
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Probabilistic and statistical approach to spectra of quantum Hamiltonians.
量子哈密顿量谱的概率和统计方法。
  • 批准号:
    09640241
  • 财政年份:
    1997
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

The emergence of universal behaviour for growth models, stochastic PDEs and random operators.
增长模型、随机偏微分方程和随机算子的通用行为的出​​现。
  • 批准号:
    EP/S012524/1
  • 财政年份:
    2018
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Fellowship
Resonant delocalisation in random operators
随机算子中的共振离域
  • 批准号:
    267136260
  • 财政年份:
    2014
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Research Grants
Distribution of eigenvalues of random operators and related limit theorems
随机算子特征值分布及相关极限定理
  • 批准号:
    26400148
  • 财政年份:
    2014
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Topics in the Spectral Theory of Random Operators and in Statistical Mechanics
随机算子谱理论和统计力学主题
  • 批准号:
    1305472
  • 财政年份:
    2013
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Continuing Grant
Non-asymptotic problems on random operators in geometric functional analysis and applications
几何泛函分析中随机算子的非渐近问题及其应用
  • 批准号:
    1001829
  • 财政年份:
    2010
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Continuing Grant
Study of spectral statistics for random operators in the framework of stationary point process theory
驻点过程理论框架下随机算子谱统计研究
  • 批准号:
    22540205
  • 财政年份:
    2010
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Spectral properties of random Schroedinger operators and random operators on manifolds and graphs
随机薛定谔算子以及流形和图上的随机算子的谱特性
  • 批准号:
    5423391
  • 财政年份:
    2004
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Independent Junior Research Groups
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了