Probabilistic and statistical approach to spectra of quantum Hamiltonians.

量子哈密顿量谱的概率和统计方法。

基本信息

  • 批准号:
    09640241
  • 负责人:
  • 金额:
    $ 1.98万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1997
  • 资助国家:
    日本
  • 起止时间:
    1997 至 1998
  • 项目状态:
    已结题

项目摘要

1. Consider real symmetric matrices X^<(n)>, n<greater than or equal>1 , whose entries are independent and identically distributed Gaussian random varibles. It is well known that the empirical distribution of the eigenvalues of X^<(n)>, under a suitable scaling, converges to the Wigner semi-circle law as n * *. Recently, T.Chan, L.Rogers, Z.Shi, and Y.Takahashi gave alternative proofs to this theorem by considering a fictitious time evolution X^<(n)>(t) of X^<(n)>, which is an idea going back to F.Dyson (1962). They investigated the stochastic differential equation (SDE) satisfied by the n-dimensional diffusion process arising from the eigenvalues of X^<(n)>. However, because of singularity of the coefficients of that SDE, they were involved in an unnecessarily complicated analysis in order to confirm the existence of its solution. We, on the other hand, simplified their argument by noting that as far as we are concerned with the derivation of the semi- circle law, it suffices to obser … More ve a simpler SDE satisfied by the Stieltjes transform of the empirical distribution. We also showed that this SDE is easily derived by considering the resolvent of X^<(n)>. These results have been obtained through a joint work with Mr. T.Hiratsuka.2. We gave a mathematical foundation to the phenomenological side of "level statistics ", which is a common issue in the theories of disordered systems, random matrices, and quantum chaos. This is only possible by regarding the whole or a part of the spectrum of a quantum Hamiltonian as a typical sample of a stationary point process, though this does not seem to have been clearly recognized by physicists. We clarified the following points :(1)Many of mathematical relations between average quantities appearing in level statistics are corollaries of Palm-Khinchin equality, which is well known in point process theory.(2)Observing level spacing distribution etc. amounts to observing the Palm measure of the point process, when we regard it as the model of the spectrum. Less
1.考虑真实的对称矩阵X^&lt;(n)&gt;,n <greater than or equal>1,其元素是独立同分布的高斯随机变量.众所周知,X^&lt;(n)&gt;的本征值的经验分布,在适当的标度下,收敛于维格纳半圆定律,即n * *。最近,T.Chan、L.Rogers、Z.Shi和Y.Takahashi通过考虑X^&lt;(n)&gt;的一个虚构的时间演化X^&lt;(n)&gt;(t)给出了这个定理的另一种证明,这是一个可以追溯到F.Dyson(1962)的想法。他们研究了由X^&lt;(n)&gt;的特征值产生的n维扩散过程所满足的随机微分方程(XN)。然而,由于该方程系数的奇异性,为了证实其解的存在,他们被卷入了不必要的复杂分析中。另一方面,我们简化了他们的论证,注意到就我们所关心的半圆定律的推导而言, ...更多信息 给出了经验分布的Stieltjes变换所满足的一个较简单的条件。我们还证明了,通过考虑X^&lt;(n)&gt;的预解式,可以很容易地导出这个矩阵。这些结果是通过与T. Hiratsuka先生的共同工作获得的。我们给出了一个数学基础的现象学方面的“水平统计”,这是一个共同的问题,在理论的无序系统,随机矩阵,量子混沌。这只能通过将量子哈密顿量的全部或部分谱视为驻点过程的典型样本来实现,尽管物理学家似乎还没有清楚地认识到这一点。我们阐明了以下几点:(1)水平统计中出现的许多平均量之间的数学关系是点过程理论中著名的Palm-Khinchin等式的推论。(2)当我们把点过程看作谱的模型时,观察能级间距分布等,就等于观察点过程的Palm测度。少

项目成果

期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
梶谷邦彦: "The canohy problem for Schradinger type ezuations with variable coefficients" Journal of Mathematical Society of Japan. Vol.50 No.1. 179-202 (1998)
Kunihiko Kajitani:“具有可变系数的 Schradinger 型方程的 Canohy 问题”,日本数学会杂志,第 50 卷,第 179-202 期(1998 年)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Akahira, Masafumi: "The concept of normaliz-ed deficiency and its application." Statistics & Decision. (to appear).
Akahira, Masafumi:“正常化缺乏症的概念及其应用。”
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Kajitani, Kunihiko: "The Cauchy problem for Schrodinger type equations with variable coefficients." J.Math.Soc.Japan. Vol.50, No.1. 179-202 (1998)
Kajitani, Kunihiko:“具有变系数的薛定谔型方程的柯西问题。”
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
石川保志: "Large deviatim estimate of trancition densities for jump processes" Annales de E'Institut Henri Poincare-Probcbilite et Statistigne. Vol.33 No.2. 179-222 (1997)
Yasushi Ishikawa:“跳跃过程截断密度的大偏差估计”Annales de EInstitut Henri Poincare-Probcbilite et Statistigne Vol.33 No.2 (1997)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
壇和日子・柴田良弘: "Remarks on the Lg-Loo estimate of the Stokes semigroup in a 2-dimensional exterior domain" Pacific Journal of Mathematics. (発表予定).
Wahiko Dan 和 Yoshihiro Shibata:“关于二维外域中斯托克斯半群的 Lg-Loo 估计的评论”太平洋数学杂志(即将出版)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MINAMI Nariyuki其他文献

MINAMI Nariyuki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MINAMI Nariyuki', 18)}}的其他基金

Spectral theory for generalized Sturm-Liouville operators and its randomization
广义Sturm-Liouville算子的谱论及其随机化
  • 批准号:
    19K03526
  • 财政年份:
    2019
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Distribution of eigenvalues of random operators and related limit theorems
随机算子特征值分布及相关极限定理
  • 批准号:
    26400148
  • 财政年份:
    2014
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of spectral statistics for random operators in the framework of stationary point process theory
驻点过程理论框架下随机算子谱统计研究
  • 批准号:
    22540205
  • 财政年份:
    2010
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of the fluctuation of spectra of random operators
随机算子谱涨落的研究
  • 批准号:
    17540100
  • 财政年份:
    2005
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of the mathematical foundation of energy level statistics.
能级统计数学基础的研究。
  • 批准号:
    13640100
  • 财政年份:
    2001
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Bayesian Learning for Spatial Point Processes: Theory, Methods, Computation, and Applications
空间点过程的贝叶斯学习:理论、方法、计算和应用
  • 批准号:
    2412923
  • 财政年份:
    2023
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Standard Grant
Universality of determinantal point processes and analysis of random phenomena
行列式点过程的普遍性和随机现象的分析
  • 批准号:
    23H01077
  • 财政年份:
    2023
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of a Causality Analysis Method for Point Processes Based on Nonlinear Dynamical Systems Theory and Elucidation of the Representation of Information Processing in the Brain
基于非线性动力系统理论的点过程因果分析方法的发展及大脑信息处理表征的阐明
  • 批准号:
    22KJ2815
  • 财政年份:
    2023
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Random structures in high dimensions: Matrices, polynomials and point processes
高维随机结构:矩阵、多项式和点过程
  • 批准号:
    2246624
  • 财政年份:
    2023
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Standard Grant
ATD: Collaborative Research: Multi-task, Multi-Scale Point Processes for Modeling Infectious Disease Threats
ATD:协作研究:用于建模传染病威胁的多任务、多尺度点过程
  • 批准号:
    2317397
  • 财政年份:
    2023
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Standard Grant
Bayesian Learning for Spatial Point Processes: Theory, Methods, Computation, and Applications
空间点过程的贝叶斯学习:理论、方法、计算和应用
  • 批准号:
    2210371
  • 财政年份:
    2022
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Standard Grant
ATD: Collaborative Research: Multi-task, Multi-Scale Point Processes for Modeling Infectious Disease Threats
ATD:协作研究:用于建模传染病威胁的多任务、多尺度点过程
  • 批准号:
    2124313
  • 财政年份:
    2021
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Standard Grant
Beyond scalar-valued marks - Statistical analysis of object-valued marked spatial point processes
超越标量值标记 - 对象值标记空间点过程的统计分析
  • 批准号:
    467634837
  • 财政年份:
    2021
  • 资助金额:
    $ 1.98万
  • 项目类别:
    WBP Position
ATD: Collaborative Research: Multi-task, Multi-Scale Point Processes for Modeling Infectious Disease Threats
ATD:协作研究:用于建模传染病威胁的多任务、多尺度点过程
  • 批准号:
    2124433
  • 财政年份:
    2021
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Standard Grant
Bayesian Nonparametric Modeling and Inference Methods for Point Processes
点过程的贝叶斯非参数建模和推理方法
  • 批准号:
    1950902
  • 财政年份:
    2020
  • 资助金额:
    $ 1.98万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了