Study of supersymmetric non-linear sigma models
超对称非线性sigma模型的研究
基本信息
- 批准号:13640283
- 负责人:
- 金额:$ 1.41万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2001
- 资助国家:日本
- 起止时间:2001 至 2003
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Study of non-linear sigma models is important for several reasons. Two-dimensional non-linear sigma models describe propagation of strings in vurved space-time. It is also a gymnasium for non-perturbative study of difficult phenomena in field theories, like mass generation, bound states problem, dynamical symmetry breaking. It also offers an example of a possible renormalizable field theory that is not renormalizable in perturbation theory. In this project, we proposedA)Auxiliary field formulation of non-linear sigma models with N=2 supersymmetry.B)Non-perturbative study of N=2 supersymmetric non-linear sigma models by using the above methodC)Search of conformal field theories by using the renormalization group equation.D)Study of conformally invariant non-linear sigma models on non-compact manifolds.We successfully formulated N=2 supersymmetric non-linear sigma models on hermitian symmetric spaces by introducing both D-term and F-term constraints. We applied the large N method to study the non-perturbative phenomena in non-linear sigma models on CP^N and Q^N. We also obtained conformal field theories on non-compact Ricci-flat manifolds constructed as a line bundle Einstein-Kahler manifold. We derived the non-perturbative renormalization group equation for N=2 supersymmetric non-linear sigma models. By solving the fixed point equation, we found new conformal field theories with anomalous dimension.
非线性模型的研究很重要,原因有几个。二维非线性模型描述了弦在弯曲时空中的传播。它也是对质量生成、束缚态问题、动力学对称性破缺等场论难题进行非摄动研究的场所。它还提供了一个在微扰理论中不可重整的可能重整场论的例子。在本项目中,我们提出了a) N=2超对称的非线性sigma模型的辅助场公式。B)利用上述方法研究N=2超对称非线性σ模型的非摄动研究c)利用重整化群方程寻找共形场理论。D)非紧流形上共形不变非线性σ模型的研究。通过引入d项和f项约束,我们成功地建立了厄米对称空间上N=2超对称非线性σ模型。应用大N方法研究了CP^N和Q^N非线性σ模型中的非摄动现象。我们还得到了用线束爱因斯坦-卡勒流形构造的非紧Ricci-flat流形的共形场理论。我们导出了N=2超对称非线性σ模型的非微扰重整化群方程。通过求解不动点方程,得到了新的具有异常维数的共形场理论。
项目成果
期刊论文数量(25)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Kiyoshi Higashijima, Muneto Nitta: "Kahler Normal Coordinate Expansion in Supersymmetric Theories"Progress of Theoretical Physics. 105巻・2号. 243-260 (2001)
Kiyoshi Higashijima,Muneto Nitta:“超对称理论中的卡勒法线坐标展开”理论物理进展第 105 卷,第 2 期。243-260 (2001)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Kiyoshi Higashijima, Tetsuji Kimura, Muneto Nitta: "A Note on Conifolds"Physics Letters. B518巻・3-4号. 301-305 (2001)
Kiyoshi Higashijima、Tetsuji Kimura、Muneto Nitta:“关于 Conifolds 的注释”,《物理快报》第 B518 卷,第 3-4 期(2001 年)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Kiyoshi Higashijima他3名: "Large N Limit of N=2 Supersymmetric $Q^N$ Model in Two-Dimensions"Progress of Theoretical Physics. 105巻・2号. 261-285 (2001)
Kiyoshi Higashijima 和其他 3 人:“二维中 N=2 超对称 $Q^N$ 模型的大 N 极限”理论物理进展第 105 卷,第 2 期。261-285 (2001)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Three-dimensional nonlinear sigma models in the Wilsonian renormalization method,
威尔逊重整化方法中的三维非线性西格玛模型,
- DOI:
- 发表时间:2003
- 期刊:
- 影响因子:0
- 作者:E.Itou;K.Higashijima
- 通讯作者:K.Higashijima
Unitarity Bound of the Wave Function Renormalization Constant
波函数重正化常数的幺正界
- DOI:
- 发表时间:2003
- 期刊:
- 影响因子:0
- 作者:Y.Habara;H.B.Nielsen;M.Ninomiya;Kiyoshi Higashijima
- 通讯作者:Kiyoshi Higashijima
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HIGASHIJIMA Kiyoshi其他文献
HIGASHIJIMA Kiyoshi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HIGASHIJIMA Kiyoshi', 18)}}的其他基金
Non-perturbative renormalization group approach to supersymmetric nonlinear sigma models
超对称非线性 sigma 模型的非微扰重整化群方法
- 批准号:
16340075 - 财政年份:2004
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Symmetry and Topology of Matter and Gravitational Fields
物质和引力场的对称性和拓扑
- 批准号:
13135215 - 财政年份:2001
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research on Priority Areas
Symmetry Breaking and Its Applications in Particle Physics
对称性破缺及其在粒子物理中的应用
- 批准号:
06640396 - 财政年份:1994
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Dynamical Breaking of Chiral Symmetry
手性对称性的动力学破缺
- 批准号:
63540230 - 财政年份:1988
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
Development of tensor network renormalization group method for high dimensions and new understanding of quantum liquid phases
高维张量网络重整化群方法的发展及对量子液相的新认识
- 批准号:
23H01092 - 财政年份:2023
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of tensor renormalization group for lattice field theories rich in internal degrees of freedom
丰富内部自由度晶格场论张量重整化群的发展
- 批准号:
23K13096 - 财政年份:2023
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERI: Representations of Complex Engineering Systems via Technology Recursion and Renormalization Group
ERI:通过技术递归和重整化群表示复杂工程系统
- 批准号:
2301627 - 财政年份:2023
- 资助金额:
$ 1.41万 - 项目类别:
Standard Grant
Homotopy Algebraic Approach to the Exact Renormalization Group Analysis in Quantum Field Theory
量子场论中精确重正化群分析的同伦代数方法
- 批准号:
22K14038 - 财政年份:2022
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Tensor renormalization group study of (3+1)-dimensional systems with the sign problem
(3 1) 维系统的符号问题的张量重整化群研究
- 批准号:
21J11226 - 财政年份:2021
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Renormalization Group Flows, Embedding Theorems, and Applications
重整化群流、嵌入定理和应用
- 批准号:
2107205 - 财政年份:2021
- 资助金额:
$ 1.41万 - 项目类别:
Standard Grant
Development of functional-renormalization-group aided density functional theory as a novel method for many-body systems
泛函重正化群辅助密度泛函理论的发展作为多体系统的新方法
- 批准号:
20J00644 - 财政年份:2020
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Improvement of tensor network renormalization group and high accuracy analysis of phase transitions and critical phenomena
张量网络重正化群的改进及相变和临界现象的高精度分析
- 批准号:
20K03780 - 财政年份:2020
- 资助金额:
$ 1.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studying Critical phenomena at the Jamming Transition through the Renormalization Group
通过重正化群研究干扰转变中的关键现象
- 批准号:
502548-2017 - 财政年份:2019
- 资助金额:
$ 1.41万 - 项目类别:
Postgraduate Scholarships - Doctoral
Studying Critical phenomena at the Jamming Transition through the Renormalization Group
通过重正化群研究干扰转变中的关键现象
- 批准号:
502548-2017 - 财政年份:2018
- 资助金额:
$ 1.41万 - 项目类别:
Postgraduate Scholarships - Doctoral














{{item.name}}会员




