New Development of Singular-Perturbation Method with Renormalization Group
重正化群奇异摄动方法的新进展
基本信息
- 批准号:13640402
- 负责人:
- 金额:$ 1.54万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2001
- 资助国家:日本
- 起止时间:2001 至 2004
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The long-time asymptotic behavior of a nonlinear dynamical system has been studied by various singular perturbation methods, such as the multi-time method, the normal form theory and the reductive perturbation method. Those various perturbation methods have been unified by the recent development of the perturbative renormalization group method (the RG method), where the long-time asymptotic behavior of a system is described by the renormalization group equation. In this work, the RG method is developed as follows.1.A symplecticity-preserving RG method is formulated and is applied to the Poicare-Birkhoff bifurcation of a two-dimensional symplectic map. We obtain analytical expressions to the resonant island structure.2.A proto-RG approach of the RG method is proposed to avoid the step of obtaining explicit secular solutions in the RG method. Various phase equations are systematically derived as RG equations from a general reaction-diffusion equation.3.The RG method with the Lie symmetry is extended to apply to interesting physical systems such as a gas sphere under gravity and adiavatic perfect gas, which have only trivial Lie symmetries.
利用各种奇异摄动方法,如多时间法、范式理论和约化摄动方法,研究了非线性动力系统的长期渐近行为。这些不同的微扰方法已经被最近发展的微扰重整化群方法(RG方法)统一起来,其中系统的长时间渐近行为由重整化群方程描述。在这项工作中,RG方法的发展如下。提出了一种保辛RG方法,并将其应用于二维辛映射的Poicare-Birkhoff分岔问题。我们得到了共振岛结构的解析表达式。提出了一种RG方法的原型RG方法,避免了RG方法中获取显式长期解的步骤。从一般的反应扩散方程出发,系统地推导出各种相方程为RG方程。将具有李对称的RG方法推广到一些有趣的物理系统,如重力作用下的气体球和绝热完美气体,它们只有平凡的李对称。
项目成果
期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
S.Goto, K.Nozaki: "Liouville Operator Approach to Symplecticity-Preserving RGM"Physica D. (in press). (2004)
S.Goto、K.Nozaki:“Liouville 算子方法保辛性 RGM”Physica D.(出版中)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Regularized Renormalization Group Reduction of Symplectic Maps
辛映射的正则重整化群约简
- DOI:
- 发表时间:2001
- 期刊:
- 影响因子:0
- 作者:S.Goto;K.Nozaki
- 通讯作者:K.Nozaki
Renormalization Analysis of Resonance Structure in a 2-D Symplectic Map
二维辛图中共振结构的重整化分析
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:S.Murata;S.Goto;T.Maruo
- 通讯作者:T.Maruo
Dynamics of Gas Sphere under Self-Gravity.
自重力作用下的气体球动力学。
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:S.Murata;S.Goto;T.Maruo;S.Murata
- 通讯作者:S.Murata
A Phase Equation of Third-Order Spatial Derivative
三阶空间导数的相位方程
- DOI:
- 发表时间:2002
- 期刊:
- 影响因子:0
- 作者:S.Murata;K.Nozaki;Y.Masutomi
- 通讯作者:Y.Masutomi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NOZAKI Kazuhiro其他文献
NOZAKI Kazuhiro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Development of tensor network renormalization group method for high dimensions and new understanding of quantum liquid phases
高维张量网络重整化群方法的发展及对量子液相的新认识
- 批准号:
23H01092 - 财政年份:2023
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of tensor renormalization group for lattice field theories rich in internal degrees of freedom
丰富内部自由度晶格场论张量重整化群的发展
- 批准号:
23K13096 - 财政年份:2023
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERI: Representations of Complex Engineering Systems via Technology Recursion and Renormalization Group
ERI:通过技术递归和重整化群表示复杂工程系统
- 批准号:
2301627 - 财政年份:2023
- 资助金额:
$ 1.54万 - 项目类别:
Standard Grant
Homotopy Algebraic Approach to the Exact Renormalization Group Analysis in Quantum Field Theory
量子场论中精确重正化群分析的同伦代数方法
- 批准号:
22K14038 - 财政年份:2022
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Tensor renormalization group study of (3+1)-dimensional systems with the sign problem
(3 1) 维系统的符号问题的张量重整化群研究
- 批准号:
21J11226 - 财政年份:2021
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Renormalization Group Flows, Embedding Theorems, and Applications
重整化群流、嵌入定理和应用
- 批准号:
2107205 - 财政年份:2021
- 资助金额:
$ 1.54万 - 项目类别:
Standard Grant
Development of functional-renormalization-group aided density functional theory as a novel method for many-body systems
泛函重正化群辅助密度泛函理论的发展作为多体系统的新方法
- 批准号:
20J00644 - 财政年份:2020
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Improvement of tensor network renormalization group and high accuracy analysis of phase transitions and critical phenomena
张量网络重正化群的改进及相变和临界现象的高精度分析
- 批准号:
20K03780 - 财政年份:2020
- 资助金额:
$ 1.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studying Critical phenomena at the Jamming Transition through the Renormalization Group
通过重正化群研究干扰转变中的关键现象
- 批准号:
502548-2017 - 财政年份:2019
- 资助金额:
$ 1.54万 - 项目类别:
Postgraduate Scholarships - Doctoral
Studying Critical phenomena at the Jamming Transition through the Renormalization Group
通过重正化群研究干扰转变中的关键现象
- 批准号:
502548-2017 - 财政年份:2018
- 资助金额:
$ 1.54万 - 项目类别:
Postgraduate Scholarships - Doctoral