Studies on Highly accurate Short-term Electric Power Load Forecasting with Fuzzy Data Mining
模糊数据挖掘高精度短期电力负荷预测研究
基本信息
- 批准号:13650319
- 负责人:
- 金额:$ 1.73万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2001
- 资助国家:日本
- 起止时间:2001 至 2003
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this project, a new hybrid intelligent system has been proposed for short-term load forecasting in power systems. The proposed method is based on the regression tree of data mining, Simplified Fuzzy Inference and Tabu Search of Meta-heuristics. The regression tree works to extract rules from data base though the decision tree so that if-then rules are obtained. Simplified Fuzzy Inference (SFI) is a good nonlinear approximation technique for nonlinear systems that is equivalent to the multi-layered perceptron (MLP) of artificial neural network. The use of Tabu Search allows SFI to construct the globally optimal rules in terms of the number of fuzzy membership functions and their location. As a result, the proposed model is superior to MLP in terms of the prediction error. At the same time, SFI is applied to the regression tree to improve the boundary conditions of the splitting conditions. The fuzzy rules contributed to the classification of data on load forecasting.Also, the use of TS is easier to determine the forecasting model from a standpoint of minimizing the maximum errors of load forecasting model through the learning process due to the advantage without any constraints. Therefore, power system operators have flexibility to give priority to the maximum or the average squared errors.In addition, the developed model contributed to the reduction of the reserves of generation so that it plays an important role as the decision making system of selling and buying the electricity and make power system operation and control more effective.
在本项目中,提出了一种新的用于电力系统短期负荷预测的混合智能系统。该方法基于数据挖掘的回归树、简化的模糊推理和元启发式的禁忌搜索。回归树通过决策树从数据库中提取规则,从而获得IF-THEN规则。简化模糊推理(SFI)是一种相当于人工神经网络多层感知器(MLP)的非线性系统逼近技术。禁忌搜索的使用使得SFI能够根据模糊隶属度函数的数目及其位置来构造全局最优规则。结果表明,该模型在预测误差方面优于MLP。同时,将SFI应用于回归树,改进了分裂条件的边界条件。模糊规则有助于对负荷预测数据进行分类,而且TS的使用更容易从最小化负荷预测模型的最大误差的角度通过学习过程确定预测模型,因为它具有不受任何约束的优点。因此,电力系统运营者可以灵活地优先考虑最大或平均平方误差,此外,该模型还有助于减少发电备用,从而作为售电和购电的决策系统发挥重要作用,使电力系统运行和控制更加有效。
项目成果
期刊论文数量(52)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Data mining method for short-term load forecasting in power systems
电力系统短期负荷预测的数据挖掘方法
- DOI:
- 发表时间:2002
- 期刊:
- 影响因子:0
- 作者:Hiroyuki Mori;Noriyuki Kosemura
- 通讯作者:Noriyuki Kosemura
A data mining method for short-term load forecasting in power systems
电力系统短期负荷预测的数据挖掘方法
- DOI:
- 发表时间:2002
- 期刊:
- 影响因子:0
- 作者:Hiroyuki Mori;Noriyuki Kosemura
- 通讯作者:Noriyuki Kosemura
A Hybrid Method of SOM and MLP for Load Forecasting
SOM和MLP混合负荷预测方法
- DOI:
- 发表时间:2003
- 期刊:
- 影响因子:0
- 作者:H.Mori;T.Itagaki
- 通讯作者:T.Itagaki
H.Mori, et al.: "An Efficient Hybrid Method of Regression Tree and Fuzzy Inference for Short-term Load Forecasting in Electric Power Systems"Proc. of RASC 2002. 1-6 (2002)
H.Mori 等人:“电力系统短期负荷预测的回归树和模糊推理的高效混合方法”Proc。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MORI Hiroyuki其他文献
PiXie Analysis for Monitoring Dynamic Protein Interaction and Folding in a Living Cell
用于监测活细胞中动态蛋白质相互作用和折叠的 PiXie 分析
- DOI:
10.2142/biophys.61.036 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
MIYAZAKI Ryoji;MORI Hiroyuki;AKIYAMA Yoshinori - 通讯作者:
AKIYAMA Yoshinori
MORI Hiroyuki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MORI Hiroyuki', 18)}}的其他基金
Developmental disorder traits and social capital in association with depression/quality of life in elementary and middle school students.
发育障碍特征和社会资本与中小学生抑郁/生活质量的关系。
- 批准号:
20K14043 - 财政年份:2020
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Prevention, Compensation and Relief Policy for Asbestos Disaster and International Relations
石棉灾害的预防、补偿、救济政策与国际关系
- 批准号:
15H01757 - 财政年份:2015
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Degradation mechanisms of sigma 32 by membrane targeting via SRP pathway
通过 SRP 途径膜靶向降解 sigma 32 的机制
- 批准号:
23657128 - 财政年份:2011
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Studies on Calculation of a Set of the Pareto Solutions for Multi-objective Optimization in Transmission Network Expansion Planning with the Uncertainties
含不确定性的输电网络扩容规划多目标优化帕累托解集计算研究
- 批准号:
23560342 - 财政年份:2011
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
SecDF function and roles of the proton motive force in protein translocation
SecDF 的功能以及质子动力在蛋白质易位中的作用
- 批准号:
22370070 - 财政年份:2010
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Static and dynamical properties characteristic to Bose-Fermi atoms on optical lattices
光学晶格上玻色费米原子的静态和动态特性
- 批准号:
21540410 - 财政年份:2009
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structural analysis of SecA-SecYE complex from Thermus thermophilus
嗜热栖热菌 SecA-SecYE 复合物的结构分析
- 批准号:
19370085 - 财政年份:2007
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Highly Accurate Short-term Electric Load Forecasting in Consideration of Equalization of Learning Data
考虑学习数据均衡的高精度短期电力负荷预测
- 批准号:
16560257 - 财政年份:2004
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies on a Load Forecasting Method with the Evolutionary Parallel Algorithm
一种进化并行算法的负荷预测方法研究
- 批准号:
09650331 - 财政年份:1997
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
ROLE OF DYSFUNCTIOINAL DOPAMINERGIC SYSTEM ON PATHOGENESIS OF POLYCYSTIC OVARIAN SYNDROME
功能障碍的多巴胺能系统在多囊卵巢综合征发病机制中的作用
- 批准号:
63570790 - 财政年份:1988
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
Development of fast calculation-type fuzzy inference models considering big data
考虑大数据的快速计算型模糊推理模型的开发
- 批准号:
15K16065 - 财政年份:2015
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Realization of Fast Calculation Method of Type-2 Fuzzy Inference Model
二类模糊推理模型快速计算方法的实现
- 批准号:
25730151 - 财政年份:2013
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Development of modal own embedding type reduction image codebook and highly magnifying image expansion based on fuzzy inference
基于模糊推理的模态自嵌入型缩减图像码本和高放大图像扩展的开发
- 批准号:
24300092 - 财政年份:2012
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of Real-time Movie Enlargement System Based on Self-reduced Image Codebook and Fuzzy Inference
基于自约简图像码本和模糊推理的实时电影放大系统开发
- 批准号:
21500230 - 财政年份:2009
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of Image Enlargement Method Based on Self-reduced Image Codebook and Vector Fuzzy Inference
基于自约图像码本和矢量模糊推理的图像放大方法的研制
- 批准号:
18500182 - 财政年份:2006
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Constructions of three simulators based on autonomous distributed systems using fuzzy inference networks
使用模糊推理网络构建三个基于自治分布式系统的模拟器
- 批准号:
18560400 - 财政年份:2006
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Automated Diagnosis of Faults in Rotating Machinery using Adaptive Network Based Fuzzy Inference
使用基于自适应网络的模糊推理自动诊断旋转机械故障
- 批准号:
DP0211809 - 财政年份:2002
- 资助金额:
$ 1.73万 - 项目类别:
Discovery Projects
Automated Diagnosis of Faults in Rotating Machinery using Adaptive Network Based Fuzzy Inference
使用基于自适应网络的模糊推理自动诊断旋转机械故障
- 批准号:
ARC : DP0211809 - 财政年份:2002
- 资助金额:
$ 1.73万 - 项目类别:
Discovery Projects
Knowledge extraction and understanding of images using Fuzzy inference neural network
使用模糊推理神经网络进行知识提取和图像理解
- 批准号:
12650394 - 财政年份:2000
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research for prediction of cervical lymph node metastasis in tongue cancer using fuzzy inference
模糊推理预测舌癌颈部淋巴结转移的研究
- 批准号:
10470436 - 财政年份:1998
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (B)