Distinguished Geometric Structures with Symmetry in Four Dimensions
四维对称的杰出几何结构
基本信息
- 批准号:DE220100919
- 负责人:
- 金额:$ 24.82万
- 依托单位:
- 依托单位国家:澳大利亚
- 项目类别:Discovery Early Career Researcher Award
- 财政年份:2022
- 资助国家:澳大利亚
- 起止时间:2022-12-31 至 2025-12-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The Ricci flow is a geometric evolution equation having significant applications in geometry, topology, as well as in physics, biology and image processing. This project aims to provide a complete description and classification of highly symmetric, self-similar solutions to the Ricci Flow in four dimensions. Such a classification is essential to understanding the behaviour of the flow, but has so far evaded discovery. This project intends to combine techniques from pure mathematics with computational techniques to complete this classification. Such an outcome would greatly improve the understanding of the geometry of four-dimensional manifolds, potentially leading to applications in several areas of science as well as image processing.
Ricci流是一种几何演化方程,在几何学、拓扑学、物理学、生物学和图像处理等领域有着重要的应用。这个项目的目的是提供一个完整的描述和分类的高度对称,自相似的解决方案,里奇流在四维。这样的分类对于理解流动的行为是必不可少的,但迄今为止还没有发现。该项目旨在将纯数学技术与计算技术联合收割机技术相结合来完成这一分类。这样的结果将大大提高对四维流形几何的理解,可能导致在几个科学领域以及图像处理中的应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr Timothy Buttsworth其他文献
Dr Timothy Buttsworth的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Lagrangian origin of geometric approaches to scattering amplitudes
- 批准号:24ZR1450600
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
CAREER: Geometric and topological mechanics of flexible structures
职业:柔性结构的几何和拓扑力学
- 批准号:
2338492 - 财政年份:2024
- 资助金额:
$ 24.82万 - 项目类别:
Continuing Grant
Geometric structures and twisted supersymmetry
几何结构和扭曲超对称
- 批准号:
EP/X014959/1 - 财政年份:2023
- 资助金额:
$ 24.82万 - 项目类别:
Research Grant
Deformation spaces of geometric structures
几何结构的变形空间
- 批准号:
2304636 - 财政年份:2023
- 资助金额:
$ 24.82万 - 项目类别:
Standard Grant
Understanding of physical properties on carbon networks with unique geometric structures
了解具有独特几何结构的碳网络的物理特性
- 批准号:
23K17661 - 财政年份:2023
- 资助金额:
$ 24.82万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Geometric structures on surfaces and harmonic maps
表面上的几何结构和调和图
- 批准号:
23KJ1468 - 财政年份:2023
- 资助金额:
$ 24.82万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Topological Quantum Field Theory and Geometric Structures in Low Dimensional Topology
低维拓扑中的拓扑量子场论和几何结构
- 批准号:
2304033 - 财政年份:2023
- 资助金额:
$ 24.82万 - 项目类别:
Standard Grant
Reconsideration of the information geometric structures from the view point of deformed thermostatistics
从变形恒温学角度重新思考信息几何结构
- 批准号:
22K03431 - 财政年份:2022
- 资助金额:
$ 24.82万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Deformations of Geometric Structures in Current Mathematics
合作研究:当代数学中几何结构的变形
- 批准号:
2212148 - 财政年份:2022
- 资助金额:
$ 24.82万 - 项目类别:
Standard Grant
Geometric structures in low dimensions
低维几何结构
- 批准号:
RGPIN-2017-05403 - 财政年份:2022
- 资助金额:
$ 24.82万 - 项目类别:
Discovery Grants Program - Individual
Study on geometric structures of curvature flows and submanifolds
曲率流和子流形的几何结构研究
- 批准号:
22K03303 - 财政年份:2022
- 资助金额:
$ 24.82万 - 项目类别:
Grant-in-Aid for Scientific Research (C)