Construction of newform theory for modular forms of half-integral weight
半积分权模形式新形式理论的构建
基本信息
- 批准号:14540027
- 负责人:
- 金额:$ 2.11万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2002
- 资助国家:日本
- 起止时间:2002 至 2004
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The purpose of our research is to construct a theory of newforms of half-integral weight. We investigated this subject from April 2002 to March 2005. And we have the following results.First, we proved trace identities of the twisted Hecke operators in the case of arbitrary even levels and any even conductors. As we already conjectures, the traces of the twisted Hecke operators are represented by linear combinations of traces of Hecke operators and Atkin-Lehner operators of integral weight.Next, we successfully established a theory of newform of half-integral weight in the case that levels are powers of 2.In order to get a theory of newforms of half-integral weight, we need to completely describe spaces of oldforms, and then for that, we must obtain a certain non-vanishing property of Fourier coefficients of cusp forms of half-integral weight. We got such non-vanishing properties by using representation theory of Metaplectic groups over quotient rings modulo powers of 2.Our final purpose is to get a theory of newform of half-integral weight for arbitrary levels N. For that, we must extend the above non-vanishing properties for arbitrary rings of residue classes modulo N. We are now investigating such non-vanishing properties.
我们研究的目的是建立一种新的半整数权理论。我们从2002年4月到2005年3月对这一课题进行了调查。首先,我们证明了任意偶数能级和任意偶数导体情形下扭曲Hecke算子的迹恒等式。正如我们已经猜想的那样,扭曲Hecke算子的迹是由Hecke算子迹和Atkin-Lehner整权算子迹的线性组合表示的。其次,我们成功地建立了半整权的新形式理论,为了得到新形式的半整权理论,我们需要完整地描述旧形式的空间,然后必须得到半整权尖点形式的傅立叶系数的某种非零性。我们利用2的模幂商环上的亚普勒群的表示理论得到了这种非零性。我们的最终目的是得到任意水平N的半整权的新形式。为此,我们必须将上述非零性推广到模N的任意剩余类的环上。我们现在正在研究这种非零性。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Trace formula of twisting operators of half-integral weight in the case of even conductors
偶数导体情况下半积分权扭转算子的迹公式
- DOI:
- 发表时间:2003
- 期刊:
- 影响因子:0
- 作者:Masaru;Ueda
- 通讯作者:Ueda
Trace formula of twisting operators of half-integral weight in the case of even conductors.
偶数导体情况下半积分权扭转算子的迹公式。
- DOI:
- 发表时间:2003
- 期刊:
- 影响因子:0
- 作者:Masaru Ueda;Masaru Ueda;Masaru Ueda;Masaru Ueda
- 通讯作者:Masaru Ueda
Trace identities of twisted Hecke operators on the spaces of wsp forms of half-integral weight
半积分权wsp形式空间上扭曲Hecke算子的迹恒等式
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Masaru Ueda
- 通讯作者:Masaru Ueda
Masaru Ueda: "Trace formula of twisting operators of half-integral weight in the case of even conductors"Proceeding of the Japan Academy. Volume 79 No.4. 85-88 (2003)
Masaru Ueda:“偶数导体情况下半积分权扭转算子的迹公式”日本学士院学报。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Trace identities of twisted Hecke operators on the spaces of cusp forms of half-integral weight
半积分权尖点形式空间上扭曲赫克算子的迹恒等式
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Masaru Ueda;Masaru Ueda
- 通讯作者:Masaru Ueda
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
UEDA Masaru其他文献
UEDA Masaru的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('UEDA Masaru', 18)}}的其他基金
Construction of newform theory for modular forms of half-integral weight
半积分权模形式新形式理论的构建
- 批准号:
10640023 - 财政年份:1998
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Modular forms of half-integral weight and representations of metaplectic groups
半积分权的模形式和超群的表示
- 批准号:
23KJ1824 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Modular forms of half-integral weight and Representations of metaplectic groups
半积分权的模形式和超群的表示
- 批准号:
22K20333 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Modular forms of half integral weight and representations of metaplectic groups
半积分权的模形式和超群的表示
- 批准号:
20J11779 - 财政年份:2020
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Lifting for Siegel modular forms of half-integral weight
半积分重物西格尔模块化形式的提升
- 批准号:
23740018 - 财政年份:2011
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Modular forms of half-integral weight
半积分重量的模形式
- 批准号:
392588-2010 - 财政年份:2011
- 资助金额:
$ 2.11万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Modular forms of half-integral weight
半积分重量的模形式
- 批准号:
392588-2010 - 财政年份:2010
- 资助金额:
$ 2.11万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
An arithmetic study of modular forms of half integral weight and Siegel modular forms
半积分权模形式和Siegel模形式的算术研究
- 批准号:
18540013 - 财政年份:2006
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Arithmetic study of Fourier coefficients of modular forms of half integral weight and Siegel modular forms
半积分权模形式与Siegel模形式傅立叶系数的算术研究
- 批准号:
16540003 - 财政年份:2004
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Arithmetic study of Fourier coefficients of modular forms of half integral weight and the special values of zeta functions
半积分权模形式傅里叶系数及zeta函数特殊值的算术研究
- 批准号:
14540002 - 财政年份:2002
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A study of Siegel modular forms of half integral weight by a method of algebraic geometry
半积分权Siegel模形式的代数几何研究
- 批准号:
10640044 - 财政年份:1998
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)