Studies on the applications of the theory of viscosity solutions to some singular perturbation problems

粘性解理论在某些奇异摄动问题中的应用研究

基本信息

项目摘要

Katsuyuki Ishii studied a numerical algorithm for motion by mean curvature, which is proposed by Bence, Merriman and Osher and obtained the following results1.I gave a proof of convergence showing how the mean curvature flow equation is derived from this algorithm. (This is a joint work with Yoko Goto and Takayoshi Ogawa.)2.I obtained the rate of convergence of this algorithm in the case of smoth motion by mean curvature. I also showed the optimality in the case of a circle evolving by curvature.Kenji Maruo studied semilinear degenerate elliptic partial differential equations in the plane. He obtained the following3.Assuming that the coefficients of the equation are radially symmetric, he proved that, under some growth conditions at infinity, the continuous viscosity solutions are radially symmetricYasuo Kageyama obtained the rate of convergence and some properties of modified Bernstein polynomials
Katsuyuki Ishii研究了Bence, Merriman和Osher提出的平均曲率运动的数值算法,得到了以下结果1。我给出了收敛性的证明,展示了如何从这个算法推导出平均曲率流方程。(这是与后藤洋子和小川隆芳的合作作品。)我通过平均曲率得到了该算法在光滑运动情况下的收敛速度。我还展示了圆按曲率演化的最优性。Kenji Maruo研究了平面上的半线性退化椭圆型偏微分方程。他得到了以下内容:他假设方程的系数是径向对称的,证明了在无穷远的某些增长条件下,连续粘度解是径向对称的

项目成果

期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A note on zeros of Lagrange interpolation polynomial of the function 1/(z-c)
关于函数 1/(z-c) 的拉格朗日插值多项式零点的注解
Nonlinear second order elliptic PDEs with subdifferential
具有次微分的非线性二阶椭圆偏微分方程
K.Maruo, Y.Tomita: "Unbounded radially symmetric viscosity solutions of semilinear degenerate elliptic equations"Math. Japonicae. 8. 107-123 (2003)
K.Maruo,Y.Tomita:“半线性简并椭圆方程的无界径向对称粘度解”数学。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K.Maruo, Y.Tomita: "Remarks on Viscosity solutions of the Divichlet problem for Quasilinear degenerate elliptic equations"Funkcial. Ekvac.. 45. 89-101 (2002)
K.Maruo、Y.Tomita:“关于拟线性简并椭圆方程 Divichlet 问题的粘度解的评论”Funkcial。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Optimal Rate of Convergence of the Bence-Merriman-Osher Algorithm for Motion by Mean Curvature
  • DOI:
    10.1137/04061862x
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Ishii
  • 通讯作者:
    K. Ishii
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ISHII Katsuyuki其他文献

ISHII Katsuyuki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ISHII Katsuyuki', 18)}}的其他基金

Studies on approximate problems, regularity and singularity for mean curvature flow
平均曲率流近似问题、规律性和奇异性研究
  • 批准号:
    24540124
  • 财政年份:
    2012
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies on approximation, regularity and singularity for mean curvature flow
平均曲率流的近似性、规律性和奇异性研究
  • 批准号:
    20540117
  • 财政年份:
    2008
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
viscosity solutions of nonlinear partial differential equations with singularities
具有奇点的非线性偏微分方程的粘度解
  • 批准号:
    10640119
  • 财政年份:
    1998
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Development of a hierarchical parallel numerical algorithm for saddle point problems
鞍点问题的分层并行数值算法的开发
  • 批准号:
    20K11840
  • 财政年份:
    2020
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of a Numerical Algorithm for Three Dimensional Automatic Lithology Correlation
三维自动岩性对比数值算法的开发
  • 批准号:
    445091-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Engage Grants Program
An Efficient Numerical Algorithm for the General Optimal Transport Problem and Applications.
一般最优传输问题的高效数值算法及其应用。
  • 批准号:
    408373-2011
  • 财政年份:
    2012
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Numerical algorithm for solving nonlinear parabolic equations via optimal transport
通过最优传输求解非线性抛物线方程的数值算法
  • 批准号:
    426251-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Inverse modelling & numerical algorithm for multiphase flows in porous media and applications in petroleum reservoir simulation
逆向建模
  • 批准号:
    355594-2008
  • 财政年份:
    2012
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical algorithm for solving nonlinear parabolic equations via optimal transport
通过最优传输求解非线性抛物线方程的数值算法
  • 批准号:
    439162-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Canadian Graduate Scholarships Foreign Study Supplements
An Efficient Numerical Algorithm for the General Optimal Transport Problem and Applications.
一般最优传输问题的高效数值算法及其应用。
  • 批准号:
    408373-2011
  • 财政年份:
    2011
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Inverse modelling & numerical algorithm for multiphase flows in porous media and applications in petroleum reservoir simulation
逆向建模
  • 批准号:
    355594-2008
  • 财政年份:
    2011
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Discovery Grants Program - Individual
Inverse modelling & numerical algorithm for multiphase flows in porous media and applications in petroleum reservoir simulation
逆向建模
  • 批准号:
    355594-2008
  • 财政年份:
    2010
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Discovery Grants Program - Individual
Development and implementation of numerical algorithm for variational methods and generalized gradient flows for geometric evolution problems of higher order for surface processing in computer graphics
计算机图形学表面处理高阶几何演化问题的变分法和广义梯度流数值算法的开发和实现
  • 批准号:
    190140394
  • 财政年份:
    2010
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Research Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了