Qualitative Theory on Oscillation of Solutions of Differential Equations

微分方程解振动的定性理论

基本信息

  • 批准号:
    14540162
  • 负责人:
  • 金额:
    $ 1.79万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2002
  • 资助国家:
    日本
  • 起止时间:
    2002 至 2003
  • 项目状态:
    已结题

项目摘要

Various extended results were obtained for qualitative theory on oscillation of solutions of partial functional-differential equations, that is, oscillation theory. Sufficient conditions for every solution of parabolic equations of neutral type to be oscillatory were established. Moreover, oscillation theorems for a generalization of the classical Rosenau-Burgers equation were obtained^Oscillation theory for vector parabolic and hyperbolic equations could be constructed. Neutral hyperbolic equations of discrete type have been treated, but we could make oscillation theory for hyperbolic equations with continuous distributed deviating arguments. Three papers on this subject were submitted for publication. Two of them are joint works with Professor Youshan Tao of Dong Hua University in P.R.China. A paper on tumor which is a joint work was accpted for publication in the journal "Ndnlinearity". Furthermore, a joint paper with Professor Litan Yan of Dong Hua University which treat oscillation theory of characteristic initial value problems for hyperbolic equations of hyperbolic type was submitted for publication. I have given an invited lecture at the international conference(Conference on Differential Equations and Applications) held in Slovakia. Then I could discuss with Slovakian Mathematicians, and I could cooperate with Professor Jaros(Comenius University) to establish Picone identities and make Sturmian comparison theorems for half-linear elliptic equations with first order terms. I could hold "Toyama Conference on Differential Equations-2003" at Toyama University, and have fruitful discussions about Mathematics with the guest speaker, Professor E. Minchev of Chiba University.
得到了关于偏泛函微分方程解的振动定性理论的各种推广结果,即振动理论。建立了中立型抛物型方程各解振动的充分条件。此外,还得到了推广经典Rosenau-Burgers方程的振动定理,并构造了矢量抛物型和双曲型方程的振动理论。对于离散型中立型双曲方程,我们已经讨论过了,但是对于具有连续分布偏差参数的双曲方程,我们可以建立振荡理论。关于这个问题的三篇论文已提交出版。其中两篇是与中国东华大学陶友山教授合作完成的。在《非线性》杂志上发表了一篇关于肿瘤的合作论文。并与东华大学阎立潭教授共同发表了一篇关于双曲型双曲方程特征初值问题的振荡理论的论文。我曾在斯洛伐克举行的国际会议(微分方程与应用会议)上做过特邀演讲。然后我可以和斯洛伐克的数学家讨论,我可以和夸美纽斯大学的Jaros教授合作建立Picone恒等式,并给出一阶半线性椭圆方程的Sturmian比较定理。我可以在富山大学举办“富山微分方程会议-2003”,并与演讲嘉宾千叶大学的E. Minchev教授就数学进行了富有成果的讨论。

项目成果

期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
E.Minchev: "Oscillations of vector differential equations of hyperbolic type with functional arguments"Mathematics Journal of Toyama University. 26. 75-84 (2003)
E.Minchev:“具有函数参数的双曲型向量微分方程的振荡”富山大学数学杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Y.Fujita: "A comparison theorem for Bellman equations of ergodic control"Differential Integral Equations. (発表予定).
Y.Fujita:“遍历控制贝尔曼方程的比较定理”微分积分方程(待提交)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Y.Tao: "Nonlinear analysis of a model of vascular tumor growth and treatment"Nonlinearity. (印刷中).
Y.Tao:“血管肿瘤生长和治疗模型的非线性分析”非线性(出版中)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
E.Minchev: "Oscillation of solutions of vector differential equatinos of parabolic type with functional arguments"Journal of Computational and Applied Mathematics. 151. 107-117 (2003)
E.Minchev:“具有函数参数的抛物型向量微分方程解的振荡”计算与应用数学杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
E.Minchev: "Oscillations of solutions of nonlinear parabolic equations via comparison method"Appl.Math.Comput.. 134. 561-566 (2003)
E.Minchev:“通过比较法求解非线性抛物型方程的振荡”Appl.Math.Comput.. 134. 561-566 (2003)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

YOSHIDA Norio其他文献

YOSHIDA Norio的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('YOSHIDA Norio', 18)}}的其他基金

Theoretical study of solvent effect on charge transfer of DNA
溶剂对DNA电荷转移影响的理论研究
  • 批准号:
    22740279
  • 财政年份:
    2010
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Establishment of unified system of oscillation theory concerning zeros of solutions of partial differential equations
偏微分方程解零点统一振荡理论体系的建立
  • 批准号:
    20540159
  • 财政年份:
    2008
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Comparioson Theory and Asymptotic Theory for Differential Equations
微分方程的比较理论和渐近理论
  • 批准号:
    16540144
  • 财政年份:
    2004
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

A new departure for qualitative theory of diamond-alpha difference equations
金刚石-α差分方程定性理论的新起点
  • 批准号:
    20K03668
  • 财政年份:
    2020
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies on the qualitative theory and singularities of nonlinear partial differential equations
非线性偏微分方程的定性理论和奇点研究
  • 批准号:
    16H02151
  • 财政年份:
    2016
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Existence, Stability, and Qualitative Theory of Traveling Water Waves
行进水波的存在性、稳定性和定性理论
  • 批准号:
    1514910
  • 财政年份:
    2015
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Continuing Grant
The Reconstruction of the Qualitative Theory of Perception
知觉定性理论的重建
  • 批准号:
    15K01980
  • 财政年份:
    2015
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Qualitative theory of integral equation with delay and its application
时滞积分方程的定性理论及其应用
  • 批准号:
    26400174
  • 财政年份:
    2014
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Qualitative theory of nonlinear partial differential equations and the analysis of singularitiesof
非线性偏微分方程的定性理论及其奇点分析
  • 批准号:
    23244017
  • 财政年份:
    2011
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
New development of the qualitative theory of nonlinear parabolic and elliptic equations
非线性抛物型和椭圆方程定性理论的新进展
  • 批准号:
    19204014
  • 财政年份:
    2007
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Qualitative theory of differential equations describing dynamics of infectious disease
描述传染病动力学的微分方程定性理论
  • 批准号:
    18540122
  • 财政年份:
    2006
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Approach to the qualitative theory of functional equations by phase plane analysis
通过相平面分析探讨函数方程定性理论
  • 批准号:
    16540152
  • 财政年份:
    2004
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
U.S.-Chile Program: Aspects of the Qualitative Theory of Functional Differential Equations
美国-智利项目:泛​​函微分方程定性理论的各个方面
  • 批准号:
    0203702
  • 财政年份:
    2002
  • 资助金额:
    $ 1.79万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了