Numerical study on the fluid dynamical equations on the basis of the Eulerian-Lagrangian formalism
基于欧拉-拉格朗日形式的流体动力学方程数值研究
基本信息
- 批准号:14540203
- 负责人:
- 金额:$ 1.34万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2002
- 资助国家:日本
- 起止时间:2002 至 2003
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We have studied the Navier-Stokes equations numerically on the basis of the Eulerian-Lagrangian formalism. In the first year we performed calculations of vortex reconnection by using two orthogonally off-set vortex tubes. The grid points used are 256^3 and 512^3. We first showed that the Jacobian determinant of the diffusive labels becomes zero because of viscous effects. To assure invertibility of labels, we reset labels as A = x when the determinant becomes close to O. It was found that the time interval over which frequent resetting takes, place corresponds to vortex reconnection. It was also found that resetting intervals are comparable to time scale of small scale turbulent motion. Thus, this method gives an objective criterion for monitoring vortex reconnection. Also, in physical space characteristics structure of iso-surfaces of vorticity |ω| and pseudo-vorticity |ζ| are compared.In the second year, Navier-Stokes turbulence was studied by applying the above methodology to numerical experiments on homogeneous isotropic turbulence. It was found that resetting is also required in the case of turbulence and that this method is effective for monitoring small-scale vortex reconnection taking place in turbulence. We next turned our attention to the relationship between the Navier-Stokes equations and the Euler equations, their inviscid counterpart. The singular perturbation nature of the relationship was characterized by using connection tensor C, a second spatial derivative of labels. It was found that the behavior of C is anomalous in the inviscid limit. More precisely, some numerical evidence was obtained which support the existence of constants A_p such that<lim>___<v→0>∫^<t_<j+1>_<t_j>||C||^2_pdt>A_p>0,||C||_p≡(1/<(2π)^3>∫|C|^pdx)^<1/p>holds for the intervals of consecutive resetting times [t_j, t_<j+1>].
我们在欧拉-拉格朗日形式主义的基础上对Navier-Stokes方程进行了数值研究。在第一年,我们用两个正交的偏置涡管进行了涡重连的计算。使用的网格点是256^3和512^3。我们首先证明了扩散标签的雅可比行列式由于粘滞效应而变为零。为了保证标签的可逆性,当行列式接近于0时,我们将标签重置为A = x。结果表明,频繁重置的时间间隔对应于旋涡重连。还发现,重置间隔与小尺度湍流运动的时间尺度相当。从而为旋涡重联的监测提供了一个客观的判据。并比较了涡度|ω|和拟涡度|ζ|等涡面在物理空间上的结构特征。第二年,将上述方法应用于均匀各向同性湍流的数值实验中,研究了Navier-Stokes湍流。研究发现,在湍流情况下也需要重置,该方法对于监测湍流中发生的小尺度涡重连是有效的。接下来,我们把注意力转向了纳维-斯托克斯方程和欧拉方程之间的关系,它们的非粘性对应物。利用连接张量C(标签的二阶空间导数)表征了该关系的奇异摄动性质。在无粘极限下,C的行为是反常的。更精确地说,得到了一些数值证据,证明了常数A_p的存在性,使得<lim>___<v→0>∫^<t_<j+1>_<t_j>||C||^2_pdt>A_p>0,||C||_p≡(1/<(2π)^3>∫|C|^pdx)^<1/p>在连续复位时间间隔内成立[t_j, t_<j+1>]。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
K.Ohkitani, P.Constantin: "Numerical study of the Eulerian-Lagrangian formulation of the Navier-Stokes equations"Phys.Fluids. 15・10. 3215-3254 (2003)
K.Ohkitani,P.Constantin:“纳维-斯托克斯方程的欧拉-拉格朗日公式的数值研究”Phys.Fluids 15・10(2003)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.Ohkitani, P.Constantin: "Numerical study of the Eulerian-Lagrangian formulation of the Navier-Stokes equations"Phys.Fluids. 15. 3215-3254 (2003)
K.Ohkitani、P.Constantin:“纳维-斯托克斯方程的欧拉-拉格朗日公式的数值研究”Phys.Fluids。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
大木谷 耕司: "Euler-Lagrange定式化による渦のつなぎ替えの数値計算"日本流体力学会年会2002講演論文集. F255-F256 (2002)
Koji Okitani:“使用欧拉-拉格朗日公式进行涡重联的数值计算”日本流体力学学会2002年年会记录。F255-F256(2002)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
OHKITANI Koji其他文献
OHKITANI Koji的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('OHKITANI Koji', 18)}}的其他基金
Numerical studies on the regularity properties of the fluid dynamical equations
流体动力学方程正则性的数值研究
- 批准号:
16540103 - 财政年份:2004
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Collaborative Research: Arbitrary Order Structure-Preserving Discontinuous Galerkin Methods for Compressible Euler Equations With Self-Gravity in Astrophysical Flows
合作研究:天体物理流中自重力可压缩欧拉方程的任意阶结构保持不连续伽辽金方法
- 批准号:
2309591 - 财政年份:2023
- 资助金额:
$ 1.34万 - 项目类别:
Standard Grant
Collaborative Research: Arbitrary Order Structure-Preserving Discontinuous Galerkin Methods for Compressible Euler Equations With Self-Gravity in Astrophysical Flows
合作研究:天体物理流中自重力可压缩欧拉方程的任意阶结构保持间断伽辽金方法
- 批准号:
2309590 - 财政年份:2023
- 资助金额:
$ 1.34万 - 项目类别:
Standard Grant
Analysis of Singularity Formation in Three-Dimensional Euler Equations and Search for Potential Singularities in Navier-Stokes Equations
三维欧拉方程奇异性形成分析及纳维-斯托克斯方程潜在奇异性搜索
- 批准号:
2205590 - 财政年份:2022
- 资助金额:
$ 1.34万 - 项目类别:
Continuing Grant
A vorticity preserving finite element method for the compressible Euler equations on unstructured grids
非结构网格上可压缩欧拉方程的保涡有限元法
- 批准号:
429491391 - 财政年份:2019
- 资助金额:
$ 1.34万 - 项目类别:
Research Fellowships
A Computer-Assisted Analysis Framework for Studying Finite Time Singularities of the 3D Euler Equations and Related Models
用于研究 3D 欧拉方程及相关模型的有限时间奇异性的计算机辅助分析框架
- 批准号:
1907977 - 财政年份:2019
- 资助金额:
$ 1.34万 - 项目类别:
Standard Grant
Well-posedness and stability for relativistic Euler equations with free boundaries
具有自由边界的相对论欧拉方程的适定性和稳定性
- 批准号:
EP/N016777/1 - 财政年份:2016
- 资助金额:
$ 1.34万 - 项目类别:
Research Grant
Non- and Semiparametric Techniques for Euler Equations
欧拉方程的非参数和半参数技术
- 批准号:
235833760 - 财政年份:2013
- 资助金额:
$ 1.34万 - 项目类别:
Research Grants
3D incompressible Euler equations: finite time singularities and Onsager's conjecture
3D 不可压缩欧拉方程:有限时间奇点和 Onsager 猜想
- 批准号:
371946-2009 - 财政年份:2013
- 资助金额:
$ 1.34万 - 项目类别:
Discovery Grants Program - Individual
3D incompressible Euler equations: finite time singularities and Onsager's conjecture
3D 不可压缩欧拉方程:有限时间奇点和 Onsager 猜想
- 批准号:
371946-2009 - 财政年份:2012
- 资助金额:
$ 1.34万 - 项目类别:
Discovery Grants Program - Individual
The Isentropic Euler Equations and Optimal Transport
等熵欧拉方程和最优输运
- 批准号:
1101423 - 财政年份:2011
- 资助金额:
$ 1.34万 - 项目类别:
Standard Grant