Well-posedness and stability for relativistic Euler equations with free boundaries
具有自由边界的相对论欧拉方程的适定性和稳定性
基本信息
- 批准号:EP/N016777/1
- 负责人:
- 金额:$ 11.97万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A rigorous mathematical description of a star requires a coupling between two famous systems of partial differential equations: the Euler equations of fluid mechanics and the Einstein equations of general relativity. These systems possess a rich mathematical structure and describe fundamental physical processes, playing an important role in both mathematics and physics. Their coupling gives the so-called Euler-Einstein system, a fundamental model in the analysis of fluid bodies coupled to gravity. One of the most important examples are the stars, idealised as fluid or gas clouds with a moving boundary interface separating them from the vacuum.The first and basic mathematical question that one can ask about the free boundary Euler-Einstein system is the following: can one develop a rigorous mathematical framework that establishes the existence and uniqueness of solutions to this system given some initial configuration of the star? Can we similarly track down the beahviour and the regularity of the moving vacuum boundary? How do the changes in initial configurations affect the solutions? Such questions are technically termed as problems of well-posedness, and the principal aim of the proposal is to develop a rigorous well-posedness framework for the moving vacuum boundary Euler-Einstein system.Mathematically, this problem intertwines various difficulties associated with both the free boundary fluids and the Einstein equations. Due to its highly nonlinear nature, it is a priori unclear whether the free vacuum boundary can cause a degeneracy in the model, leading to a potential breakdown of the solutions, even after a very short time. Even in the Newtonian setting, the degenerate nature of the problem was hinted at by John Von Neumann as early as 1949. However, the past few decades have seen striking developments in the rigorous study of the Newtonian free boundary Euler equations on one hand, and in the mathematical general relativity on the other. A satisfactory well-posedness theory for the Newtonian free boundary compressible fluids has been developed in the past 3 years. Similarly, a rigorous mathematical study of relativistic fluids is a rich and broad topic, that has generated a lot of mathematical research over the past decade. As an example, a momentous breakthrough in the study of stable shock formation for relativistic fluids was accomplished by Christodoulou in 2007.While such works provide an important impetus for this proposal, the complicated, but beautiful interaction between the free boundary geometry and the relativistic geometry, gives rise to new mathematical structures and additional challenges with respect to the existing literature. The proposal explores these structures in detail and develops novel ideas to show the well-posedness of 1) the free vacuum boundary Euler equations on the Minkowski spacetime and 2) the free vacuum boundary Euler-Einstein system. It then uses the thus established framework to address the stability of the well-known Friedmann-Lemaitre- Robertson-Walker solutions, describing an accelerating expanding universe.
对一颗恒星进行严格的数学描述需要两个著名的偏微分方程组之间的耦合:流体力学的欧拉方程和广义相对论的爱因斯坦方程。这些系统具有丰富的数学结构,描述了基本的物理过程,在数学和物理学中都起着重要的作用。它们的耦合给出了所谓的欧拉-爱因斯坦系统,这是分析流体与重力耦合的基本模型。最重要的例子之一是恒星,理想的流体或气体云,有一个移动的边界界面将它们与真空分开。关于自由边界欧拉-爱因斯坦系统,人们可以问的第一个基本的数学问题是:在给定恒星的一些初始构型的情况下,能否建立一个严格的数学框架来建立这个系统解的存在性和唯一性?我们是否可以类似地追踪移动真空边界的行为和规律?初始配置的更改如何影响解决方案?这些问题在技术上被称为适位性问题,本建议的主要目的是为运动真空边界欧拉-爱因斯坦系统建立一个严格的适位性框架。在数学上,这个问题与自由边界流体和爱因斯坦方程相关的各种困难交织在一起。由于其高度非线性的性质,目前尚不清楚自由真空边界是否会导致模型中的简并,从而导致解的潜在击穿,即使在很短的时间之后。即使在牛顿的背景下,约翰·冯·诺伊曼早在1949年就暗示了问题的简并性。然而,在过去的几十年里,一方面在牛顿自由边界欧拉方程的严格研究方面取得了惊人的进展,另一方面在数学广义相对论方面取得了惊人的进展。在过去的三年中,人们已经建立了一个令人满意的牛顿自由边界可压缩流体的适定性理论。同样,对相对论性流体进行严格的数学研究是一个丰富而广泛的主题,在过去十年中产生了大量的数学研究。例如,2007年Christodoulou在研究相对论性流体的稳定激波形成方面取得了重大突破。虽然这些工作为这一建议提供了重要的推动力,但自由边界几何和相对论几何之间复杂而美丽的相互作用,产生了新的数学结构,并对现有文献提出了额外的挑战。本文对这些结构进行了详细的探讨,并提出了新的思想来证明1)闵可夫斯基时空上的自由真空边界欧拉方程和2)自由真空边界欧拉-爱因斯坦系统的适定性。然后,它使用这样建立的框架来解决著名的弗里德曼-勒梅特-罗伯逊-沃克解决方案的稳定性,描述一个加速膨胀的宇宙。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dynamics of expanding gases.
- DOI:
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Mahir Hadžić;J. Jang
- 通讯作者:Mahir Hadžić;J. Jang
Global expanding solutions of compressible Euler equations with small initial densities
- DOI:10.1090/qam/1580
- 发表时间:2019-04
- 期刊:
- 影响因子:0.8
- 作者:Shrish Parmeshwar;Mahir Hadžić;J. Jang
- 通讯作者:Shrish Parmeshwar;Mahir Hadžić;J. Jang
Continued Gravitational Collapse for Newtonian Stars
- DOI:10.1007/s00205-020-01580-w
- 发表时间:2020-10-06
- 期刊:
- 影响因子:2.5
- 作者:Guo, Yan;Hadzic, Mahir;Jang, Juhi
- 通讯作者:Jang, Juhi
Nonlinear Stability of Expanding Star Solutions of the Radially Symmetric Mass-Critical Euler-Poisson System
- DOI:10.1002/cpa.21721
- 发表时间:2018-05-01
- 期刊:
- 影响因子:3
- 作者:Hadzic, Mahir;Jang, Juhi
- 通讯作者:Jang, Juhi
Stability and Instability of Self-Gravitating Relativistic Matter Distributions
自引力相对论物质分布的稳定性和不稳定性
- DOI:10.1007/s00205-021-01647-2
- 发表时间:2021
- 期刊:
- 影响因子:2.5
- 作者:Hadžić, Mahir;Lin, Zhiwu;Rein, Gerhard
- 通讯作者:Rein, Gerhard
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mahir Hadzic其他文献
Mahir Hadzic的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mahir Hadzic', 18)}}的其他基金
Singularities and mixing in Euler flows
欧拉流中的奇点和混合
- 批准号:
EP/S02218X/1 - 财政年份:2019
- 资助金额:
$ 11.97万 - 项目类别:
Fellowship
Qualitative dynamics in the Stefan problem with and without surface tension
有和没有表面张力的 Stefan 问题的定性动力学
- 批准号:
1211517 - 财政年份:2012
- 资助金额:
$ 11.97万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Well-posedness and long-time behavior of reaction-diffusion and kinetic equations
职业:反应扩散和动力学方程的适定性和长期行为
- 批准号:
2337666 - 财政年份:2024
- 资助金额:
$ 11.97万 - 项目类别:
Continuing Grant
Well-posedness and Long-time Behavior of Dispersive Integrable Systems
色散可积系统的适定性和长期行为
- 批准号:
2348018 - 财政年份:2024
- 资助金额:
$ 11.97万 - 项目类别:
Continuing Grant
Well-Posedness and Singularity Formation in Applied Free Boundary Problems
应用自由边界问题中的适定性和奇异性形成
- 批准号:
2307638 - 财政年份:2023
- 资助金额:
$ 11.97万 - 项目类别:
Standard Grant
Studies on behavior of solutions and the well-posedness for the nonlinear dispersive system in plasma physics
等离子体物理中非线性色散系统解的行为及适定性研究
- 批准号:
23KJ2028 - 财政年份:2023
- 资助金额:
$ 11.97万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Well-Posedness for Integrable Dispersive Partial Differential Equations
可积色散偏微分方程的适定性
- 批准号:
2054194 - 财政年份:2021
- 资助金额:
$ 11.97万 - 项目类别:
Standard Grant
Effective use of multi-precision arithmetic on floating number system of digital computers aiming at numerical computations of differential equations with singulari or ill-posedness
针对奇异或不适定微分方程的数值计算,有效利用数字计算机浮点数系统的多精度运算
- 批准号:
21H00999 - 财政年份:2021
- 资助金额:
$ 11.97万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Well-posedness of a model for the dynamics of fluids with the moving contact line
具有移动接触线的流体动力学模型的适定性
- 批准号:
21K13826 - 财政年份:2021
- 资助金额:
$ 11.97万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Research on the well-posedness, regularity, and justification of numerical methods for fluid problems and related boundary-value problems
流体问题及相关边值问题数值方法的适定性、规律性和合理性研究
- 批准号:
20K14357 - 财政年份:2020
- 资助金额:
$ 11.97万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Well-posedness for the equation on electrohydrodynamics
电流体动力学方程的适定性
- 批准号:
20K14350 - 财政年份:2020
- 资助金额:
$ 11.97万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Hamilton-Jacobi equations on metric measure spaces
度量测度空间上的 Hamilton-Jacobi 方程
- 批准号:
20K22315 - 财政年份:2020
- 资助金额:
$ 11.97万 - 项目类别:
Grant-in-Aid for Research Activity Start-up