Deformation of independences in non-commutative probability spaces

非交换概率空间中独立性的变形

基本信息

  • 批准号:
    14540201
  • 负责人:
  • 金额:
    $ 1.47万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2002
  • 资助国家:
    日本
  • 起止时间:
    2002 至 2004
  • 项目状态:
    已结题

项目摘要

In usual probability space, if the pair of an algebra of bounded random variable on it and an expectation map then we can reconstruct the original probability space from such a pair of an algebra and an expectation map. The above algebra is commutative, hence, the usual probability space can be associated with a commutative algebra. Non-commutative probability space can be obtained by malting the algebra be non-commutative. Sometime such a procedure would be called quantization. Although the independence on usual probability spaces can be extended to a non-commutative probability space, it will require that independent random variables should be commutative. Unfortunately, this extension will not reflect well non-commutativity because the usual independence is based on tensor product. Voiculescu introduced the free independence which is based on free products and reflects well non-commutativity.If we are restricted that the independence should give the rule of calculation for mixed mom … More ents then only three kinds of independence (usual, free, and Boolean) are allowed in non-commutative probability space under some axioms. This is most explicit formalization of independence in non-commutative probability space. In general, independences should determine convolutions, and convolutions would give the moments-cumulants formulae. Standing this point of view, we can consider a more implicit deformed independence by deformations of moments-cumulants formula.In this project, we have adopted this procedure, that is, we have considered the deformation of independence by making deformations of moments-cumulants formulae. We have made several deformed free convolution, which interpolate free and Boolean convolutions. For the s-free and the r-free deformations, we investigated the corresponding Gaussian and Poisson random variables, especially on the s-free case, we have constructed the s-free Fock space (one of deformations of full Fock space) and gave the s-free Gaussian and the s-free Poisson random variables by the annihilation and the creation operators. Furthermore, we have extended the q-deformation, which is well known example that interpolates usual (the Boson Fock space) and Boolean (the Fermionic Fock space) convolutions, to 2-parameters cases. We call such a deformation the generalized q-deformation. As the generalized q-deformation, the (q,t) and the (q,s) deformations have been investigated and corresponding set partition statistics are also studied. Much more general deformed free convolution, the Delta-deformation, was introduced by Bozejko. We also succeeded to construct the weight function on non-crossing partitions for any given Delta convolution, which suggests us some kinds of new set partition statistics on non-crossing partitions. Less
在通常的概率空间中,如果有界随机变量的代数和期望映射的配对,则可以由这对代数和期望映射重构原始的概率空间。上述代数是可交换的,因此,通常的概率空间可以与交换代数相联系。非对易概率空间可以通过将代数转化为非对易而得到。有时,这样的过程将被称为量化。虽然对通常概率空间的独立性可以推广到非交换概率空间,但这将要求独立随机变量必须是可交换的。遗憾的是,这种推广不能很好地反映非对易性,因为通常的独立性是基于张量积的。Vocerescu提出了自由独立性,它建立在自由积的基础上,很好地反映了非交换性,如果对独立性进行限制,就应该给出混合MoM…的计算规则在一些公理下,非对易概率空间中只允许三种独立性(通常的、自由的和布尔的)。这是非对易概率空间中独立性的最明确的形式化。一般来说,独立性应该决定卷积,而卷积将给出矩-累积量公式。站在这个角度,我们可以考虑一种更隐式的通过矩-累积量公式变形的独立性。在这个项目中,我们采用了这个过程,即我们通过使矩-累积量公式变形来考虑独立性的变形。我们做了几个变形的自由卷积,它们插值自由卷积和布尔卷积。对于S自由和r自由变形,我们研究了相应的高斯和泊松随机变量,特别是在S自由的情况下,我们构造了S自由Fock空间(全Fock空间的变形之一),并通过湮灭和创造算符给出了S自由的高斯和S自由的泊松随机变量。此外,我们还将通常的(玻色子-Fock空间)和布尔(费米子-Fock空间)卷积内插的著名例子Q-形变推广到双参数情形。我们称这种变形为广义Q-变形。作为广义q-变形,我们研究了(q,t)和(q,S)变形,并研究了相应的集合划分统计量。Bozejko提出了更一般的变形自由卷积--Delta变形。对于任意给定的Delta卷积,我们还成功地构造了非交叉划分的权函数,这给出了一些新的关于非交叉划分的集合划分统计量。较少

项目成果

期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reiko Hori, Hiroaki Yoshida: "The spectrum radii of free convex sums of projections"Natural Science Report of Ochanomizu University. 54・2. 1-9 (2003)
堀丽子、吉田弘明:“自由凸投影和的谱半径”御茶水大学自然科学报告54・2(2003年)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Remarks on the s-free convolution
关于s-free卷积的备注
On a generalized arc-sine law for one-dimensional diffusion processes.
一维扩散过程的广义反正弦定律。
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kasahara;Y.;Yano Y.
  • 通讯作者:
    Yano Y.
Anna Krystek, Hiroaki Yoshida: "The combinatorics of the r-free convolution"Infinite Dimensional Analysis, Quantum Probability and Related Topics. 6・4. 619-627 (2003)
Anna Krystek、Hiroaki Yoshida:“无 r 卷积的组合学”无限维分析、量子概率和相关主题 6・4(2003 年)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Yuji Kasahara, Yuko Yano: "On a generalized arc-sine law for one-dimensional diffusion processes"Osaka J.Math.. (掲載予定).
Yuji Kasahara、Yuko Yano:“关于一维扩散过程的广义反正弦定律”Osaka J.Math..(待出版)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

YOSHIDA Hiroaki其他文献

Asymptotic behavior of bifurcation branch of positive solutions for semilinear Sturm-Liouville problems
半线性Sturm-Liouville问题正解分岔分支的渐近行为
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fujine Yano;Hiroaki Yoshida;Yoshikazu Katayama;Tetsutaro Shibata;吉田 裕亮;Tetsutaro Shibata;Marie Choda;YOSHIDA Hiroaki;Tetsutaro Shibata
  • 通讯作者:
    Tetsutaro Shibata
Effectiveness of a Method of Evaluating the Clothing Comfort Sensation in a Perspiration State by Measuring Psychophysiological Responses
通过测量心理生理反应来评估出汗状态下服装舒适感的方法的有效性
Meixner operators on the q-Fock space and Schrodinger Algebra
q-Fock 空间和薛定谔代数上的 Meixner 算子
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fujine Yano;Hiroaki Yoshida;Yoshikazu Katayama;Tetsutaro Shibata;吉田 裕亮;Tetsutaro Shibata;Marie Choda;YOSHIDA Hiroaki
  • 通讯作者:
    YOSHIDA Hiroaki
Remarks on non-crossing linked partitions and free Meixner law
关于非交叉链接分区和自由梅克斯纳定律的评论
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fujine Yano;Hiroaki Yoshida;Yoshikazu Katayama;Tetsutaro Shibata;吉田 裕亮;Tetsutaro Shibata;Marie Choda;YOSHIDA Hiroaki;Tetsutaro Shibata;YOSHIDA Hiroaki
  • 通讯作者:
    YOSHIDA Hiroaki
Perturbation theoretic entropy of the boundary actions of free groups
自由群边界作用的微扰理论熵
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fujine Yano;Hiroaki Yoshida;Yoshikazu Katayama;Tetsutaro Shibata;吉田 裕亮;Tetsutaro Shibata;Marie Choda;YOSHIDA Hiroaki;Tetsutaro Shibata;YOSHIDA Hiroaki;Rui Okayasu
  • 通讯作者:
    Rui Okayasu

YOSHIDA Hiroaki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('YOSHIDA Hiroaki', 18)}}的其他基金

Creation of Thermally-Dissolvable Hydrogels under Cell Culture Conditions
在细胞培养条件下创建热溶解水凝胶
  • 批准号:
    26750158
  • 财政年份:
    2014
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Grhl2 regulation of SPINT1 expression controls organogenesis of the embryonic salivary gland
Grhl2 对 SPINT1 表达的调节控制胚胎唾液腺的器官发生
  • 批准号:
    26463032
  • 财政年份:
    2014
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Investigation into the sleeping comfort of mattress by using numerical analysis
利用数值分析研究床垫的睡眠舒适度
  • 批准号:
    25330318
  • 财政年份:
    2013
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Investigation into the sleeping comfort of mattress using numerical analysis
利用数值分析研究床垫的睡眠舒适度
  • 批准号:
    22700213
  • 财政年份:
    2010
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Automatic Synthesis Method of High-Performance, Area-Efficient and Programmable Hardware
高性能、面积高效、可编程硬件的自动综合方法
  • 批准号:
    22760245
  • 财政年份:
    2010
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Deformations of probability distributions on non-commutative probability spaces
非交换概率空间上概率分布的变形
  • 批准号:
    21540213
  • 财政年份:
    2009
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Photo-dissociation processes of greenhouse gases CHF3, CF4, and SF6
温室气体 CHF3、CF4 和 SF6 的光解过程
  • 批准号:
    20510010
  • 财政年份:
    2008
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Control of photodissociation reaction of fluoromethane molecules using deformation in core-excited state
利用核心激发态变形控制氟甲烷分子的光解反应
  • 批准号:
    16550015
  • 财政年份:
    2004
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Genetic Trait for Progression of Chronic Renal Disease
慢性肾病进展的遗传特征
  • 批准号:
    09671181
  • 财政年份:
    1997
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of lightweight wood-cement composite board using microballoon of fine pulvernized volcanic glass(micro-Shirasu-balloons)
利用细粉火山玻璃微球(微白石球)开发轻质木水泥复合板
  • 批准号:
    04660184
  • 财政年份:
    1992
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

Correspondence between non-commutative probability, probability and univalent function theories
非交换概率、概率与单价函数理论之间的对应关系
  • 批准号:
    19K14546
  • 财政年份:
    2019
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Loewner theory and non-commutative probability theory
Loewner理论和非交换概率论
  • 批准号:
    401281084
  • 财政年份:
    2018
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Research Grants
Deformation of Bargmann-Fock representation in non-commutative probability theory
非交换概率论中Bargmann-Fock表示的变形
  • 批准号:
    16K05175
  • 财政年份:
    2016
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Deformation of Fisher information and entropy in non-commutative probability spaces
非交换概率空间中 Fisher 信息和熵的变形
  • 批准号:
    26400112
  • 财政年份:
    2014
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Construction of the notions of independence in non-commutative probability theory
非交换概率论中独立性概念的构建
  • 批准号:
    23654039
  • 财政年份:
    2011
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Research on classical and non-commutative probability
经典概率和非交换概率研究
  • 批准号:
    0904720
  • 财政年份:
    2009
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Standard Grant
Deformations of probability distributions on non-commutative probability spaces
非交换概率空间上概率分布的变形
  • 批准号:
    21540213
  • 财政年份:
    2009
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Operator algebras & non-commutative probability
算子代数
  • 批准号:
    44324-2003
  • 财政年份:
    2007
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Discovery Grants Program - Individual
Operator algebras & non-commutative probability
算子代数
  • 批准号:
    44324-2003
  • 财政年份:
    2006
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Discovery Grants Program - Individual
Operator algebras & non-commutative probability
算子代数
  • 批准号:
    44324-2003
  • 财政年份:
    2005
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了