Study of Algorithms and Applications of Approximate Algebra

近似代数算法及应用研究

基本信息

  • 批准号:
    15300002
  • 负责人:
  • 金额:
    $ 7.36万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2006
  • 项目状态:
    已结题

项目摘要

The purposes of this research are, 1) to establish and analyze new concepts, 2) to develop new algorithms, 3) to stabilize existing algorithms, and 4) applications to science and engineering.Results on 1) Concepts of approximately singular and approximate non-conjugateness are introduced (Sasaki). The denominator factors appearing in extended Hensel factors are clarified, and the properties of convergence and many-valuedness of extended Hensel series are investigated numerically (Sasaki & student).Results on 2) A stable method for computing Grobner bases with floating-point numbers is proposed (Sasaki-Kako). A new method is found for multivariate polynomial factorization (Sasaki & student). A semi-algebraic method is proposed to separate close-root clusters of univariate polynomial (Sasaki-Kako). A very tight error-bound formula is derived for numerical roots of univariate polynomial (Sasaki). A theory of recursive subresultants is developed for separating the real roots of univariate … More polynomial (Terui). A simultaneous iterative formula of arbitrary degree of convergence is derived for symbolic Newton's method (Terui). A method of drawing two-dimensional pseudovariety is developed (Kai et al.). A method of constructing nearest polynomials of degrees up to 4 is developed (Noda-Kai et al.). A method for approximate indefinite integral of rational functions with parameters is proposed (Kai-Noda & student).Results on 3) The reason of occurrence of large errors in the computation of floating-point Grobner base is clarified (Sasaki-Kako). As for ill-conditioned cases in computing approximate GCDs of multivariate as well as univariate polynomials, several techniques to stabilize PRS-type algorithms are proposed (Sasaki & student). By analyzing the univariate rational-function approximation with floating-point numbers, clarified is the reason of appearance of unnecessary poles and a stabilization method based on the Pade approximation is proposed (Kai-Noda & students).Results on 4) As for the 8-line arrangement problem, a complete classification of the arrangements is attained, after many experiments of generating 8-line arrangements (Fukui et al.). Less
本研究的目的是:1)建立和分析新的概念,2)开发新的算法,3)稳定现有的算法,4)在科学和工程中的应用。阐明了扩展的Hensel因子中的分母因子,数值研究了扩展的Hensel级数的收敛性和多值性(Sasaki & student).结果2)给出了计算浮点数Grobner基的稳定方法(Sasaki-Kako).本文提出了一种多元多项式因式分解的新方法。提出了一种分离一元多项式闭根簇的半代数方法。给出了一元多项式数值根的严格误差界公式。本文提出了一种分离一元函数的真实的根的递归次结式理论 ...更多信息 多项式(Terui)。本文导出了符号牛顿法(Terui法)的一个任意收敛阶的联立迭代公式. Kai等人发展了一种绘制二维伪簇的方法。开发了一种构造次数最多为4的最近多项式的方法(Noda Kai等人)。本文提出了含参数有理函数不定积分的一种近似方法(Kai-Noda & Student),并得到了以下结果:(3)阐明了浮点Grobner基计算中出现较大误差的原因(Sasaki-Kako)。至于病态的情况下,在计算近似GCD的多元以及单变量多项式,提出了几种技术来稳定PRS型算法(佐佐木和学生)。通过对浮点数的一元有理函数逼近的分析,阐明了出现不必要极点的原因,并提出了一种基于Pade逼近的稳定化方法(Kai-Noda & Students)。结果4)对于8线排列问题,通过多次生成8线排列的实验(福井等),得到了排列的完整分类。少

项目成果

期刊论文数量(77)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tighter bounds of errors of numerical roots
数值根误差的更严格界限
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Tadokoro;Y. Yamaguti;I. Tsuda and H. Fujii;M. Yamazato;M. Takeda;T. Sasaki
  • 通讯作者:
    T. Sasaki
Ill-conditioned properties and hybrid computation
病态属性和混合计算
A quick computation of all kinds of transversals for dissections of an arrangement
快速计算用于解剖排列的各种横截面
G関数を用いた数学公式データベースの実装について
关于使用G函数实现数学公式数据库
L.Zhi, M.T.Noda, H.Kai, W.Wu: "Hybrid method for computing the nearest singular polynomials"Jpn J.Ind.App.Math.. (to appear). (2004)
L.Zhi、M.T.Noda、H.Kai、W.Wu:“计算最近奇异多项式的混合方法”Jpn J.Ind.App.Math..(即将出现)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SASAKI Tateaki其他文献

SASAKI Tateaki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SASAKI Tateaki', 18)}}的其他基金

Study of Algorithm and Application of Approximate Groebner Basis
近似Groebner基的算法及应用研究
  • 批准号:
    23500003
  • 财政年份:
    2011
  • 资助金额:
    $ 7.36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of Algorithms and Applications of Approximate Algebra
近似代数算法及应用研究
  • 批准号:
    19300001
  • 财政年份:
    2007
  • 资助金额:
    $ 7.36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Study of Algorithms and Applications of Approximate Algebra
近似代数算法及应用研究
  • 批准号:
    12480065
  • 财政年份:
    2000
  • 资助金额:
    $ 7.36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
The Development of Graphing Software for Secondary School Mathematics
中学数学绘图软件的开发
  • 批准号:
    11558010
  • 财政年份:
    1999
  • 资助金额:
    $ 7.36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B).
Study of Algorithms and Applications of Approximate Algebra
近似代数算法及应用研究
  • 批准号:
    09308008
  • 财政年份:
    1997
  • 资助金额:
    $ 7.36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Development of Approximate Algebraic Computation System
近似代数计算系统的开发
  • 批准号:
    06558037
  • 财政年份:
    1994
  • 资助金额:
    $ 7.36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Development of numeric-algebraic hybrid computation system
数值代数混合计算系统的开发
  • 批准号:
    03558008
  • 财政年份:
    1991
  • 资助金额:
    $ 7.36万
  • 项目类别:
    Grant-in-Aid for Developmental Scientific Research (B)
Study of General Formula Manipulation System
通用公式操作系统的研究
  • 批准号:
    62580029
  • 财政年份:
    1987
  • 资助金额:
    $ 7.36万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
Research on Formula Manipulation Expert System Based on Database of Mathematical Formulas
基于数学公式数据库的公式运算专家系统研究
  • 批准号:
    60580033
  • 财政年份:
    1985
  • 资助金额:
    $ 7.36万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

Efficiency, Structure and Robustness in Algebraic Computation
代数计算的效率、结构和鲁棒性
  • 批准号:
    RGPIN-2018-04950
  • 财政年份:
    2022
  • 资助金额:
    $ 7.36万
  • 项目类别:
    Discovery Grants Program - Individual
Efficiency, Structure and Robustness in Algebraic Computation
代数计算的效率、结构和鲁棒性
  • 批准号:
    RGPIN-2018-04950
  • 财政年份:
    2021
  • 资助金额:
    $ 7.36万
  • 项目类别:
    Discovery Grants Program - Individual
Efficiency, Structure and Robustness in Algebraic Computation
代数计算的效率、结构和鲁棒性
  • 批准号:
    RGPIN-2018-04950
  • 财政年份:
    2020
  • 资助金额:
    $ 7.36万
  • 项目类别:
    Discovery Grants Program - Individual
Efficiency, Structure and Robustness in Algebraic Computation
代数计算的效率、结构和鲁棒性
  • 批准号:
    RGPIN-2018-04950
  • 财政年份:
    2019
  • 资助金额:
    $ 7.36万
  • 项目类别:
    Discovery Grants Program - Individual
study on discrete point sets to produce new applications of lattice theory and algebraic computation
研究离散点集以产生格论和代数计算的新应用
  • 批准号:
    19K03628
  • 财政年份:
    2019
  • 资助金额:
    $ 7.36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Efficiency, Structure and Robustness in Algebraic Computation
代数计算的效率、结构和鲁棒性
  • 批准号:
    RGPIN-2018-04950
  • 财政年份:
    2018
  • 资助金额:
    $ 7.36万
  • 项目类别:
    Discovery Grants Program - Individual
International Symposium on Symbolic and Algebraic Computation
符号与代数计算国际研讨会
  • 批准号:
    1708884
  • 财政年份:
    2017
  • 资助金额:
    $ 7.36万
  • 项目类别:
    Standard Grant
A research on symbolic and algebraic computation of groups and combinatorics and its application
群与组合的符号代数计算及其应用研究
  • 批准号:
    23540011
  • 财政年份:
    2011
  • 资助金额:
    $ 7.36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Symbolic, generic, exact and approximate algebraic computation
符号、通用、精确和近似代数计算
  • 批准号:
    155376-2002
  • 财政年份:
    2007
  • 资助金额:
    $ 7.36万
  • 项目类别:
    Discovery Grants Program - Individual
Applications of symbolic-algebraic computation in applied mathematics
符号代数计算在应用数学中的应用
  • 批准号:
    121721-2004
  • 财政年份:
    2007
  • 资助金额:
    $ 7.36万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了