Study on Floer cohomology, mirror symmetry conjecture and singularity
Florer上同调、镜面对称猜想与奇异性研究
基本信息
- 批准号:15340020
- 负责人:
- 金额:$ 7.1万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2006
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We revised our paper on obstruction theory and deformation theory of Lagrangian Floer cohomology. This is a joint work with K. Fukaya, Y-G. Oh and K. Ono. In March 2006, we wrote up the manuscript (more than 800 pages) of Chapter 1,2,3,4,5,6,7 and 9 and made the preprint version which were distributed in the world. We established the transversality argument on the spaces with Kuranishi structure. This will play very important role to derive homotopy algebraic structure from various moduli spaces. During the revision, we define the potential function in the context of our-filtered A_∞ algebra and show that it coincides with the super potential of the Landau-Ginzburg model in physics literature. This was predicted by physists Hori and Vafa. In 2006, we have finished to write up the remaining chapters, Chapter 8 and Chapter 10. In Chapter 8, we study the case of semi-positive Lagrangian submanifolds. In this case, we can establish our results over Z or Z_2 coefficients. We apply the results to, for example, the Arnold-Givental conjecture. In Chapter 10, we investigate how the moduli space of pseudo holomorphic discs changes under Lagrangian surgery. We also describe the analytic detail. Moreover, we describe the action of cycles of the ambient symplectic manifold to the filtered A_∞ algebra in terms of L_∞ homomorphism. And we discovered a new relation between the torsion part of our Floer cohomology and Hofer distance of Hamilton isotopy.
对已有的关于Lagrange Floer上同调的障碍理论和形变理论的文章进行了修正。这是与K的合作。福谷,Y-G。哦,还有K。小野2006年3月,我们完成了第1、2、3、4、5、6、7、9章的手稿(800多页),并制作了预印本,在全球发行。建立了仓西结构空间的横截性论证。这对于从各种模空间中导出同伦代数结构具有重要的意义。在修正过程中,我们在我们的-过滤A_∞代数的背景下定义了势函数,并证明了它与物理文献中Landau-Ginzburg模型的超势是一致的。这是物理学家Hori和Vafa预测的。2006年,我们完成了剩余的章节,第8章和第10章。在第八章中,我们研究了半正拉格朗日子流形的情形。在这种情况下,我们可以建立Z或Z_2系数上的结果。我们应用的结果,例如,Arnold-Givental猜想。在第十章中,我们研究了伪全纯圆盘的模空间在拉格朗日手术下的变化。我们还描述了分析的细节。此外,我们还利用L ∞同态刻画了周围辛流形的圈对滤子A ∞代数的作用.并且发现了我们的Floer上同调的挠率部分与汉密尔顿合痕的霍费尔距离之间的一个新的关系。
项目成果
期刊论文数量(30)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Geometric transitions, Chern-Simons gauge theory and Veneziano type amplitudes
几何转变、Chern-Simons 规范理论和 Veneziano 型振幅
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Tohru Eguchi;Hiroaki Kanno
- 通讯作者:Hiroaki Kanno
Conformal field theories associated to regular chiral vertex operator algebras
与正则手性顶点算子代数相关的共形场论
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:H.Murakami;Y.Yokota;Akihiro Tsuchiya
- 通讯作者:Akihiro Tsuchiya
J-Holomorphic Curves and Symplectic Topology
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:D. Mcduff;D. Salamon
- 通讯作者:D. Mcduff;D. Salamon
Symplectic 4-wani folds containing singular ratronal unves with (2,3)-cusp
辛 4-wani 褶皱,包含具有 (2,3)-尖点的单一 Ratronal Unves
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:足利正;遠藤久顕;Hajime Tsuji;Hiroshi Ohta
- 通讯作者:Hiroshi Ohta
Symplectic 4-manifolds containing singular rational curves with (2,3)-wsp.
包含具有 (2,3)-wsp 的奇异有理曲线的辛 4-流形。
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:M.Ishikawa;T.C.Nguyen;M.Oka;S.Ishii;A.Ushijima;Hiroshi Ohta
- 通讯作者:Hiroshi Ohta
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
OHTA Hiroshi其他文献
OHTA Hiroshi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('OHTA Hiroshi', 18)}}的其他基金
Establishment of novel technique using primordial germ cells induced from embryonic stem cells
建立利用胚胎干细胞诱导的原始生殖细胞的新技术
- 批准号:
24680045 - 财政年份:2012
- 资助金额:
$ 7.1万 - 项目类别:
Grant-in-Aid for Young Scientists (A)
Floer theory, mirror symmetry conjecture and applications to symplectic geometry
弗洛尔理论、镜面对称猜想及其在辛几何中的应用
- 批准号:
23340015 - 财政年份:2011
- 资助金额:
$ 7.1万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Study on the pathogenesis of canine inflammatory bowel disease: investigation of the intestinal mucosal barrier function and intestinal mucosal cytokine expression.
犬炎症性肠病发病机制研究:肠粘膜屏障功能及肠粘膜细胞因子表达的研究。
- 批准号:
23780315 - 财政年份:2011
- 资助金额:
$ 7.1万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
'Tragedy of the Commons'Revisited: a FreeRising Mechanism via Altruistic Utility and Capital Accumulation
重温“公地悲剧”:通过利他效用和资本积累实现自由崛起机制
- 批准号:
22530229 - 财政年份:2010
- 资助金额:
$ 7.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Theoretical Analysis on Sustainability of Resource Economy subject to Discrete Type Uncertainty
离散型不确定性下资源经济可持续性的理论分析
- 批准号:
19530153 - 财政年份:2007
- 资助金额:
$ 7.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Pseudo-holomorphic map and Floer cohomology and their applications to symplectic geometry
伪全纯映射和Floer上同调及其在辛几何中的应用
- 批准号:
19340017 - 财政年份:2007
- 资助金额:
$ 7.1万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
A Study of Resource and Environment Policy and Dynamic Gains from Trade
资源环境政策与贸易动态收益研究
- 批准号:
16530118 - 财政年份:2004
- 资助金额:
$ 7.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
DEVELOPMENTS OF DESIGNING METHOED OF CONTROL CHART TO ENHANCE DETECTION POWER IN HIGH-YIELD PROCESSES
提高高产过程检测能力的控制图设计方法的进展
- 批准号:
14580484 - 财政年份:2002
- 资助金额:
$ 7.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Floer homology, string theory and contact geometry
弗洛尔同调、弦理论和接触几何
- 批准号:
12640066 - 财政年份:2000
- 资助金额:
$ 7.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Optimal Investment Rule for Substainability of Resource Economies, Efficiency and Equity
资源经济、效率和公平可持续性的最优投资规则
- 批准号:
12630010 - 财政年份:2000
- 资助金额:
$ 7.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Floer Cohomology and Birational Geometry
弗洛尔上同调和双有理几何
- 批准号:
1811861 - 财政年份:2018
- 资助金额:
$ 7.1万 - 项目类别:
Continuing Grant
Floer cohomology of Lagrangian submanifolds with non-commutative group actions
具有非交换群作用的拉格朗日子流形的Floer上同调
- 批准号:
16K05120 - 财政年份:2016
- 资助金额:
$ 7.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Symplectic Floer cohomology, mirror symmetry and gauge theory
辛弗洛尔上同调、镜像对称和规范理论
- 批准号:
1406418 - 财政年份:2014
- 资助金额:
$ 7.1万 - 项目类别:
Standard Grant
Lagrangian Floer cohomology and Khovanov homology
拉格朗日弗洛尔上同调和科万诺夫同调
- 批准号:
EP/H035303/1 - 财政年份:2010
- 资助金额:
$ 7.1万 - 项目类别:
Research Grant
Pseudo-holomorphic map and Floer cohomology and their applications to symplectic geometry
伪全纯映射和Floer上同调及其在辛几何中的应用
- 批准号:
19340017 - 财政年份:2007
- 资助金额:
$ 7.1万 - 项目类别:
Grant-in-Aid for Scientific Research (B)