Construction of Generic Polynomials in Galois Theory and application to Number Theory

伽罗瓦理论中泛多项式的构造及其在数论中的应用

基本信息

  • 批准号:
    15340015
  • 负责人:
  • 金额:
    $ 6.66万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2005
  • 项目状态:
    已结题

项目摘要

Thanks to the current Grant-in-Aid, we were able to organize seven research workshops inviting the most active mathematicians on this field, through which we had many discussions on our subjects.This enabled us to make a considerable developments along our reseach project on Galois theory.As for the main theme of constructing generic polynomials with given finite groups over Q, our first result is the construction of concrete and simple families of quintic polynomials with two parameters for each of the five transitive permutation groups of degree 5. As a remarkable application we have established the proof of the genericity of the famous family of A_5 polynomials of degree 6 found by A.Bumer, in connection with algebraic curves of genus two whose Jacobian have real multiplication of discriminant 5.Our second result is concerned with the Noethers' Problem for the meta abelian groups of exponent 8 which are subgroups of the affine transformation group over Z/8Z. We have proved the affirmative answer for the linear representation of degree 4 for each of them, in contrast with the negative answer for cyclic group of order 8. As a biproduct of this result, we obtained a simple criterion for a cyclic extension L/K of degree 4 to be embedded into a cyclic extension of degree 8.
由于目前的助学金,我们能够组织七次研究研讨会,邀请该领域最活跃的数学家,通过这些研讨会,我们对我们的主题进行了许多讨论。这使我们能够沿着伽罗瓦理论的研究项目取得相当大的进展。对于构造Q上给定有限群的一般多项式的主题,我们的第一个结果是对5次传递置换群中的每一个都构造具有两个参数的具体的、简单的五次多项式族。作为一个显著的应用,我们建立了a . bumer发现的著名的6次多项式族A_5的一般证明,它与雅可比矩阵为5的实乘法的2属代数曲线有关。我们的第二个结果是关于Z/8Z上仿射变换群的子群,幂为8的元阿贝尔群的Noethers问题。我们证明了它们每一个的4次线性表示的肯定答案,而对8次循环群的否定答案。作为这一结果的双积,我们得到了4次循环扩展L/K嵌入到8次循环扩展中的一个简单准则。

项目成果

期刊论文数量(38)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hyperelliptic curves and mod 2 Galois representations
超椭圆曲线和 mod 2 Galois 表示
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Katsuya Miyake;Kiichiro Hashimoto;Kiichiro Hashimoto;Kiichiro Hashimoto;Kiichiro Hashimoto;Kiichiro Hashimoto;Kiichiro Hashimoto
  • 通讯作者:
    Kiichiro Hashimoto
Zariski $K$-plets of rational curve arrangements and dihedral covers
Zariski $K$-有理曲线排列和二面覆盖的 plet
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Artal Bartolo;Enrique;Tokunaga;Hiro-o
  • 通讯作者:
    Hiro-o
Geometric generalization of Gaussian period relations with application to Noether's problem for meta-cyclic groups
高斯周期关系的几何推广及其在元循环群诺特问题中的应用
Noether's Problem and Q-generic Polynomial for the affine transformation group Z/8Z and its subgroups of exponent 8
仿射变换群 Z/8Z 及其指数 8 子群的诺特问题和 Q 泛多项式
An Introduction to Elliptic Curves and their Diophantine Geometry--Mordell Curves
椭圆曲线及其丢番图几何简介--莫德尔曲线
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

HASHIMOTO Kiichiro其他文献

HASHIMOTO Kiichiro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('HASHIMOTO Kiichiro', 18)}}的其他基金

Noether's Problem for Cremona Groups over algebraic number fields and its application to Number theory
代数数域上克雷莫纳群的诺特问题及其在数论中的应用
  • 批准号:
    19340011
  • 财政年份:
    2007
  • 资助金额:
    $ 6.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Construction of abelian equations and study of Gaussian sums
阿贝尔方程的构造和高斯和的研究
  • 批准号:
    12640047
  • 财政年份:
    2000
  • 资助金额:
    $ 6.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on the arithmetic of algebraic curves and jacobian varieties
代数曲线与雅可比簇的算法研究
  • 批准号:
    09640075
  • 财政年份:
    1997
  • 资助金额:
    $ 6.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Computability and the absolute Galois group of the rational numbers
可计算性和有理数的绝对伽罗瓦群
  • 批准号:
    2348891
  • 财政年份:
    2024
  • 资助金额:
    $ 6.66万
  • 项目类别:
    Continuing Grant
Counting number fields with finite Abelian Galois group of bounded conductor that can be described as the sum of two squares.
使用有界导体的有限阿贝尔伽罗瓦群来计算数域,可以将其描述为两个平方和。
  • 批准号:
    2889914
  • 财政年份:
    2023
  • 资助金额:
    $ 6.66万
  • 项目类别:
    Studentship
Motivic Galois group(Fostering Joint International Research)
Motivic Galois 小组(促进国际联合研究)
  • 批准号:
    15KK0159
  • 财政年份:
    2016
  • 资助金额:
    $ 6.66万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research)
motivic Galois group
动机伽罗瓦群
  • 批准号:
    24684001
  • 财政年份:
    2012
  • 资助金额:
    $ 6.66万
  • 项目类别:
    Grant-in-Aid for Young Scientists (A)
Small quotients of absolute Galois group
绝对伽罗瓦群的小商
  • 批准号:
    400426-2010
  • 财政年份:
    2010
  • 资助金额:
    $ 6.66万
  • 项目类别:
    University Undergraduate Student Research Awards
Motivic fundamental group and motivic Galois group
动机基本群和动机伽罗瓦群
  • 批准号:
    21740008
  • 财政年份:
    2009
  • 资助金额:
    $ 6.66万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Rigid varieties, triangle groups, the action of the absolute Galois group
刚性簇、三角形群、绝对伽罗瓦群的作用
  • 批准号:
    36677791
  • 财政年份:
    2007
  • 资助金额:
    $ 6.66万
  • 项目类别:
    Research Units
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了