Noether's Problem for Cremona Groups over algebraic number fields and its application to Number theory

代数数域上克雷莫纳群的诺特问题及其在数论中的应用

基本信息

  • 批准号:
    19340011
  • 负责人:
  • 金额:
    $ 8.74万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2007
  • 资助国家:
    日本
  • 起止时间:
    2007 至 2009
  • 项目状态:
    已结题

项目摘要

We studied the Noether's Problem, which asks the rationality of the fixed field of the rational function field of several variables over a given field, with respect to a given finite subgroup G of the Cremona group. We solved this problem affirmatively in the case where G is one of the transitive permutation groups of degree six, and obtained the explicit description of the fixed field as expected. The results are now being collected and prepared in some papers, although it will take some time before the completion. During the period of the research, we had in each year a workshop entitled as "Galois theory and related topics", and discussed the various related problems.. They were held in the university of Yamagata (2007), Tokushima (2008), and Kanazawa (2009). We also had a conference on number theory each year at Waseda university and communicated with many experts of this subject, including those from foreign countries.
本文研究了关于Cremona群的有限子群G的Noether问题,该问题要求给定域上的多元有理函数域的固定域的合理性。在G是一个六次可迁置换群的情况下,我们肯定地解决了这个问题,并得到了预期的固定域的明确描述。目前正在收集调查结果,并将其编入一些文件,不过完成调查还需要一些时间。在研究期间,我们每年都有一个名为“伽罗瓦理论和相关主题”的研讨会,并讨论了各种相关问题。分别在山形大学(2007年)、德岛大学(2008年)、金泽大学(2009年)举办。我们每年还在早稻田大学举行数论会议,与许多这方面的专家,包括来自国外的专家进行交流。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Weber's Class Number Problem in the Cyclotomic Z_2-Extension of QII
QII 循环 Z_2 扩展中的韦伯类数问题
General form of Humbert's modular equation for curves with real multiplication of D=5
实数乘法 D=5 的曲线亨伯特模方程的一般形式
Noether's problem and Q-generic polymials for the normalizer the 8-cycle in s_8 and its subgroups
诺特问题和标准化器 s_8 及其子群中的 8 周期的 Q 泛多项式
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kiichiro Hashimoto;Akinari Hoshi;Yuichi Rikuna
  • 通讯作者:
    Yuichi Rikuna
Iwasawa lambda-invariants and Mordell-Weil rank of Jacobian varieties with complex multiplication
复杂乘法雅可比簇的 Iwasawa lambda 不变量和 Mordell-Weil 等级
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Takashi Fukuda;Keiichi Komatsu;Shuji Yamagata
  • 通讯作者:
    Shuji Yamagata
Ponceletの閉形定理とDelta=8の実乗法を持つ種数2の超楕円曲線について
关于Poncelet的闭式定理和具有Delta=8实数定律的属2超椭圆曲线
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kiichiro Hashimoto;Yukiko Sakai
  • 通讯作者:
    Yukiko Sakai
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

HASHIMOTO Kiichiro其他文献

HASHIMOTO Kiichiro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('HASHIMOTO Kiichiro', 18)}}的其他基金

Construction of Generic Polynomials in Galois Theory and application to Number Theory
伽罗瓦理论中泛多项式的构造及其在数论中的应用
  • 批准号:
    15340015
  • 财政年份:
    2003
  • 资助金额:
    $ 8.74万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Construction of abelian equations and study of Gaussian sums
阿贝尔方程的构造和高斯和的研究
  • 批准号:
    12640047
  • 财政年份:
    2000
  • 资助金额:
    $ 8.74万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on the arithmetic of algebraic curves and jacobian varieties
代数曲线与雅可比簇的算法研究
  • 批准号:
    09640075
  • 财政年份:
    1997
  • 资助金额:
    $ 8.74万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

ガロアの逆問題を背景とするネーターの有理性問題の数論的研究
基于伽罗瓦反问题的诺特合理性问题的算术研究
  • 批准号:
    19K03447
  • 财政年份:
    2019
  • 资助金额:
    $ 8.74万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
p群に対するガロアの逆問題の不分岐解に関する研究
p群伽罗瓦反问题无分支解的研究
  • 批准号:
    26400009
  • 财政年份:
    2014
  • 资助金额:
    $ 8.74万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
ガロアの逆問題に対する構成的研究とその応用
伽罗瓦反问题的建设性研究及其应用
  • 批准号:
    00J05721
  • 财政年份:
    2000
  • 资助金额:
    $ 8.74万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了