Application of integrable systems methods to surfaces with particular variational properties

可积系统方法在具有特定变分特性的表面上的应用

基本信息

  • 批准号:
    15340023
  • 负责人:
  • 金额:
    $ 6.91万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2006
  • 项目状态:
    已结题

项目摘要

The following results were obtained:1) In a joint research project with U. Hertrich-Jeromin, S. Santos and F. Burstall, a suitable definition for discrete constant mean curvature surfaces in 3 dimensional space forms was obtained. Those 3 dimensional space forms consist of Euclidean 3-space, spherical 3-space and hyperbolic 3-space. It was shown that this new definition matches the old definition that is known for the Euclidean case, and this definition is new in the hyperbolic case. Using this definition, discrete Delaunay surfaces were studied, along with their discrete Darboux and Backlund transformations. An important tool in this research was the notion of conserved quantities. The case of smooth surfaces was developed by S. Santos and F. Burstall, while the discrete case was developed by U. Hertrich-Jeromin and myself.2) In a joint research project with my Ph.D. graduate student N. Sultana, the stability and Morse index of constant mean curvature surfaces of revolution in spherical 3-space was studied. Because the axis of such a surface is a closed loop, these surfaces can become close tori, and then they will have finite index. It was shown that all such surfaces are unstable, and that they all have index at least 5, and (depending on the choice of surface) the index can be arbitrarily large. The index is the number of negative eigenvalues of the associated Jacobi operator.3) In a continuation of a project with M. Kokubu, M. Umehara and K. Yamada, surfaces with constant Gauss curvature 0 in hyperbolic 3-space (flat fronts, which can have singularities) were studied. In particular, this year, it was shown that the caustics of such surfaces can have ends with asymptotic behavior described by cycloids.
1)在与美国Hertrich-Jeromin、S.Santos和F.Burstall的联合研究项目中,得到了三维空间形式中离散常平均曲率曲面的一个合适的定义。这些空间形式包括欧几里得三维空间、球面三维空间和双曲三维空间。结果表明,这种新定义与欧几里得情形的旧定义相匹配,并且在双曲情形下是新的定义。利用这个定义,研究了离散Delaunay曲面及其离散Darboux和Backlund变换。这项研究的一个重要工具是守恒量的概念。光滑曲面的情形是由S.Santos和F.Burstall发展的,而离散情形是由U.Hertrich-Jeromin和我自己发展的。2)在与我的博士研究生N.Sultana的联合研究项目中,研究了球面三维空间中常平均曲率旋转曲面的稳定性和Morse指数。因为这样的曲面的轴线是一个闭合的环,所以这些曲面可以成为闭合的环面,然后它们将具有有限的指数。结果表明,所有这样的曲面都是不稳定的,并且它们的指数都至少为5,并且(取决于曲面的选择)指数可以任意大。3)在与M.Kokubu,M.Umehara和K.Yamada的一个项目的继续中,研究了双曲空间(平坦面,可以有奇点)中具有常高斯曲率0的曲面。特别是,今年的研究表明,这类曲面的焦散线可以有由摆线描述的渐近行为的末端。

项目成果

期刊论文数量(34)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Unitarization of monodromy representations and constant mean curvature trinoids in 3‐dimensional space forms
  • DOI:
    10.1112/jlms/jdm005
  • 发表时间:
    2004-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N. Schmitt;M. Kilian;Shimpei Kobayashi;W. Rossman
  • 通讯作者:
    N. Schmitt;M. Kilian;Shimpei Kobayashi;W. Rossman
Constructing Mean Curvature 1 Surfaces in H^3 with Irregular Ends (共著者 梅原雅顕氏, 山田光太郎氏)
构造具有不规则末端的 H^3 中的平均曲率 1 曲面(合著者 Masaaki Umehara、Kotaro Yamada)
Period Problems for Mean Curvature 1 Surfaces in $H^3$ (with M. Umehara, K. Yamada)
$H^3$ 中平均曲率 1 曲面的周期问题(与 M. Umehara、K. Yamada 合作)
Period Problems for Mean Curvature 1 Surfaces in H^3 with application to surfaces of low total curvature (共著者 梅原雅顕氏, 山田光太郎氏)
H^3 中平均曲率 1 曲面的周期问题及其应用于低总曲率曲面(合著者 Masaaki Umehara 和 Kotaro Yamada)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M.Umehara;K.Yamada;N.Sultana;N.Sultana;W.Rossman;W.Rossman;W.Rossman;W.Rossman;W.Rossman;W.Rossman;W.Rossman;W.Rossmnan;W.Rossman;W.Rossman;W.Rossman
  • 通讯作者:
    W.Rossman
W.Rossman: "Period Problems for Mean Curvature 1 Surfaces in H^3 with application to surfaces of low total curvature(共著者 梅原雅顕氏、山田光太郎氏)"Advanced Studies in Pure Mathematics. (未定)(to appear). (2004)
W.Rossman:“H^3 中平均曲率 1 曲面的周期问题及其应用于低总曲率曲面(合著者 Masaaki Umehara 和 Kotaro Yamada)”纯数学高级研究(待定)(待发表)。 (2004)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ROSSMAM W.F.其他文献

ROSSMAM W.F.的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

PRIMES: Matroids, Polyhedral Geometry, and Integrable Systems
PRIMES:拟阵、多面体几何和可积系统
  • 批准号:
    2332342
  • 财政年份:
    2024
  • 资助金额:
    $ 6.91万
  • 项目类别:
    Standard Grant
Well-posedness and Long-time Behavior of Dispersive Integrable Systems
色散可积系统的适定性和长期行为
  • 批准号:
    2348018
  • 财政年份:
    2024
  • 资助金额:
    $ 6.91万
  • 项目类别:
    Continuing Grant
Algebraic Geometry of Hitchin Integrable Systems and Beyond
希钦可积系统及其他代数几何
  • 批准号:
    2301474
  • 财政年份:
    2023
  • 资助金额:
    $ 6.91万
  • 项目类别:
    Continuing Grant
Differential geometry and integrable systems: exploiting new links
微分几何和可积系统:利用新的联系
  • 批准号:
    23H00083
  • 财政年份:
    2023
  • 资助金额:
    $ 6.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Conference: Red Raider Mini-Symposium on Differential Geometry, Integrable Systems, and Applications
会议:Red Raider 微分几何、可积系统及应用小型研讨会
  • 批准号:
    2301994
  • 财政年份:
    2023
  • 资助金额:
    $ 6.91万
  • 项目类别:
    Standard Grant
Conference: Finite Dimensional Integrable Systems 2023
会议:有限维可积系统 2023
  • 批准号:
    2308659
  • 财政年份:
    2023
  • 资助金额:
    $ 6.91万
  • 项目类别:
    Standard Grant
Quantum groups, integrable systems and dualities
量子群、可积系统和对偶性
  • 批准号:
    2302661
  • 财政年份:
    2023
  • 资助金额:
    $ 6.91万
  • 项目类别:
    Standard Grant
Algebraic Geometry and Integrable Systems -- Moduli theory and Equations of Painleve type
代数几何与可积系统——模理论与Painleve型方程
  • 批准号:
    22H00094
  • 财政年份:
    2022
  • 资助金额:
    $ 6.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Elliptic discrete integrable systems and bi-elliptic addition formulae
椭圆离散可积系统和双椭圆加法公式
  • 批准号:
    EP/W007290/1
  • 财政年份:
    2022
  • 资助金额:
    $ 6.91万
  • 项目类别:
    Research Grant
Fluctuations and correlations at large scales from emergent hydrodynamics: integrable systems and beyond
新兴流体动力学中的大规模波动和相关性:可积系统及其他
  • 批准号:
    EP/W010194/1
  • 财政年份:
    2022
  • 资助金额:
    $ 6.91万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了