Reseach for the singularities and regularity of solutions to crtical nonlinear partial differential equations

临界非线性偏微分方程解的奇异性和正则性研究

基本信息

项目摘要

The main researcher, Prof.Ogawa obtained the following results. He researched for the Sobolev type inequality of the critical type, especially for the real interpolation spaces such as Besov and Triebel-Lirzorkin spaces and generalized it for the abstract Besov and Lorentz space. Those inqualities involving the logarithmic interpolation order can be applied for the regularity and uniqueness criterion of the seimilinear partial differential equation. In a series of collaboration with the research colabolators, he shows that the reguarlity and uniquness criterion for the weak solution of the 3 dimensional Navier-Stokes equations and break down condition for the Euer equation. In a similar method, he also showed the regularity criterion for the smooth solution of the 2 dimensional harmonic heat flow into a sphere. In particular, for the weak solution of the harmonic heat flow, the similar regularity criterion is also holds. The result is obtained by establishing the "monotonicity formula" … More for the mean oscillation of the energy density of the solutions.He also consider the asymptotic behavior of the solution for the semi-lineear parabolic equation of the non-local type. Those system appeared in a various Physical scaling such as semi-conductor simulation model, Chemotaxis model and the birth of star in Astronomy. The system is involving Poisson equation as the field generated by the dencity of the charge or mucous ameba and the non-local effect is essential for the analysis of the solution. He particulariy investigated to the critical situation, 2-dimensional case, and showed that there exists a time local solution in the critical Hardy space, time global solution upto the threshold initial density and finite time blow-up for the system of forcusing drift-diffusion case. Besides, the asymootitic behavior of the solution for small data is characterized by the heat kernel. Moreover if the field equation is purterbed in a certain nonlinear way, then there exist two solutions for the same initial data in a radially symmetric case.He also studied for the asymptotic behavior of the solution for the semi-linear damped wave equation in whole and half spaces and exterior domains and show the small solution is going to be decomposed into the solutions of the linear heat equation, some combination of linear wave equation with nonlinear effect. This was shown for 1 and 3 dimensional cases before, however the mothod there could not be applicable for the 2dimensional case. Less
主要的研究员Ogawa教授获得了以下结果。他研究了关键类型的Sobolev类型不平等,尤其是对于真正的插值空间,例如Besov和Triebel-Lirzorkin空间,并将其概括为抽象的Besov和Lorentz空间。那些涉及对数插值顺序的查询可以用于标准层偏微分方程的规律性和独特标准。在与研究共蛋白公司的一系列合作中,他表明,navier-stokes方程的弱解决方案的易害性和UNICES标准,并破坏了EUER方程的条件。在类似的方法中,他还展示了两个维度的平滑溶液谐波热流入球体的规律性标准。特别是,对于谐波热流的较弱溶液,还持有相似的规律性标准。通过建立“单调性”公式来获得结果……更多用于溶液的能量密度的平均振荡。由电荷或粘液ameba的齿轮和非本地效应产生的田地对于对解决方案的分析至关重要。此外,如果磁场方程以某种非线性方式启动,则在径向对称的情况下存在两个解决方案,用于相同的初始数据。与非线性效应的等效性。在1和3维情况下显示了这一点,但是该基序不适用于2维情况。较少的

项目成果

期刊论文数量(172)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The uniform boundedness of the radial solution for drift-diffusion system
漂移扩散系统径向解的一致有界性
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M.Kurokiba;T.Nagai;T.Ogawa
  • 通讯作者:
    T.Ogawa
Bilinear estiamtes in homogeneous Triebel-Lizorkin spaces and the Navier-Stokes equations,
齐次 Triebel-Lizorkin 空间和 Navier-Stokes 方程中的双线性估计,
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hideo Kozono;Yukihiro Shimada
  • 通讯作者:
    Yukihiro Shimada
自由境界をもつ高次元極小曲面の存在とその時間発展の特異性
具有自由边界的高维最小曲面的存在及其时间演化的特性
L^p-L^q type estimate for the semi-linear dumped wave equation in two dimensions.,
二维半线性倾倒波动方程的 L^p-L^q 型估计。
Weak solutions to the Navier-Stokes Poisson equations
纳维-斯托克斯泊松方程的弱解
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

OGAWA Takayoshi其他文献

大規模宇宙論的シミュレーションを用いた銀河古成分の研究
使用大规模宇宙学模拟研究星系古成分
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    IWABUCHI Tsukasa;OGAWA Takayoshi;石山智明
  • 通讯作者:
    石山智明
「自然科学分析」『平城宮東院地区の調査-第584次・第587次・第593次』
《自然科学分析》《平城宫东区调查-第584次、第587次、第593次》
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    IWABUCHI Tsukasa;OGAWA Takayoshi;村上裕章;村田泰輔
  • 通讯作者:
    村田泰輔

OGAWA Takayoshi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('OGAWA Takayoshi', 18)}}的其他基金

Correlation research for non-local interaction system and the mass transport conservation law
非局域相互作用系统与质量输运守恒定律的相关研究
  • 批准号:
    23654059
  • 财政年份:
    2011
  • 资助金额:
    $ 8.26万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Research for Critical Asymptotic Structure of Nonlinear Evolution Equations
非线性演化方程的临界渐近结构研究
  • 批准号:
    20244009
  • 财政年份:
    2008
  • 资助金额:
    $ 8.26万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Asymptotic Analysis for Singularities of Solutions to Nonlinear Partial Differential Equations
非线性偏微分方程解奇异性的渐近分析
  • 批准号:
    11440057
  • 财政年份:
    1999
  • 资助金额:
    $ 8.26万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Research for the Lp theory of the solutions to nonlinear partial differential equations
非线性偏微分方程解的Lp理论研究
  • 批准号:
    09640179
  • 财政年份:
    1997
  • 资助金额:
    $ 8.26万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似国自然基金

Richards方程和漂移扩散模型的非线性Schwarz预条件算法
  • 批准号:
    12371440
  • 批准年份:
    2023
  • 资助金额:
    44.00 万元
  • 项目类别:
    面上项目

相似海外基金

On blow-up solutions for system of nonlinear drift-diffusion equations with nonlocal interactions
具有非局部相互作用的非线性漂移扩散方程组的爆炸解
  • 批准号:
    16K05219
  • 财政年份:
    2016
  • 资助金额:
    $ 8.26万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Inverse Problems for Drift-Diffusion Equations with Applications to Chemotaxis and Synthetic Nanopores
漂移扩散方程反问题及其在趋化性和合成纳米孔中的应用
  • 批准号:
    222235984
  • 财政年份:
    2012
  • 资助金额:
    $ 8.26万
  • 项目类别:
    Research Grants
Mathematical analysis on hyperbolic-elliptic systems arising in semiconductor engineering and plasma physics
半导体工程和等离子体物理中出现的双曲椭圆系统的数学分析
  • 批准号:
    23740111
  • 财政年份:
    2011
  • 资助金额:
    $ 8.26万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Research on the Semi-coherent Quantum Transport Simulation for Silicon Nanodevices.
硅纳米器件半相干量子输运模拟研究。
  • 批准号:
    13650387
  • 财政年份:
    2001
  • 资助金额:
    $ 8.26万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了