Research on the theory of viscosity solutions and its applications
粘度解理论及其应用研究
基本信息
- 批准号:15340051
- 负责人:
- 金额:$ 7.74万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2005
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We proposed and proved the effectiveness of singular diffusions in the vertical direction in the level set approach to first-order partial differential equations (pde for short). We established the strong maximum principle to viscosity solutions of fully nonlinar elliptic pde including the minimal surface eqaution. We builded an example of fully nonlinear uniformly elliptic pde for which the maximum principle does not holds, and established the maximum principle, Holder regularity, and the solvability of the Dirichlet problem for such nonlinear pde under suitable hypotheses. We introduced the convexified Gauss curvature flow, formulated the level set approach to its generalizations, and established existence and uniqueness of solutions of the pde which appears in the level set approach. We also introduced a stochastic approaximation scheme to the generalized convexified Gauss flow and proved its convergence. We proved on a mathematical basis the occurrence of Berg's effect when the crystal shape is a cylinder. For the BMO (Bence-Merrima-Osher) scheme, we gave a new proof of its convergence to the mean curvature flow and the optimal estimate on the rate of convergence. We proved the convergence the asymptotic solutions as time goes to infinity of solutions of parabolic pde with the Ornstein-Uhlenbeck operator. We analized the simultaneous effects of homogenization and vanishing viscosity in periodic homogenization of uniformly elliptic pde. We proved existence and uniqueness of the limit in the zero-noise of certain h-path processes and established existence and uniqueness of the Monge-Kantorovich problem with a quadratic cost. Regarding mathematical finance, we studied optimal stopping time problems and risk-sensitive portfolio optimization problems for general factor models and constructed their optimal strategies. We analized the asymptotic behavior of solutions of p-Laplace equations as p goes to infinity in a fairly general setting.
提出并证明了水平集方法求解一阶偏微分方程(简称偏微分方程)中垂直方向奇异扩散的有效性。建立了包含极小曲面方程的完全非线性椭圆型偏微分方程粘性解的强极大值原理。建立了一个完全非线性一致椭圆型偏微分方程极大值原理不成立的例子,在适当的假设下,建立了这类偏微分方程的极大值原理、保持器正则性和Dirichlet问题的可解性.我们引入了凸化高斯曲率流,将水平集方法推广到它的推广,并建立了水平集方法中出现的偏微分方程解的存在唯一性.我们还对广义凸化高斯流引入了一种随机逼近格式,并证明了它的收敛性。本文从数学上证明了当晶体形状为圆柱形时,贝格效应的发生。对于BMO(Bence-Merrima-Osher)格式,给出了其收敛于平均曲率流的一个新的证明和收敛速度的最优估计.证明了带有Ornstein-Uhlenbeck算子的抛物型偏微分方程解的渐近解随时间趋于无穷远的收敛性。分析了均匀椭圆偏微分方程周期均匀化中均匀化和粘性消失的同时作用。证明了一类h-路过程在零噪声下极限的存在唯一性,建立了二次费用Monge-Kantorovich问题的存在唯一性.在金融数学方面,研究了一般因子模型的最优停时问题和风险敏感投资组合优化问题,并构造了它们的最优策略。在相当一般的情形下,我们分析了p-Laplace方程解在p趋于无穷大时的渐近性态。
项目成果
期刊论文数量(165)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On breakdown of solutions of a constrained gradient system of total variation.
关于全变分约束梯度系统解的分解。
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Y.Giga;H.Kuroda
- 通讯作者:H.Kuroda
The principle of symmetric criticality for non-differentiable mappings.
不可微映射的对称临界性原理。
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:J.Kobayashi;M.Otani
- 通讯作者:M.Otani
Anisotropic curvature flow in a very thin domain.
非常薄的域中的各向异性曲率流。
- DOI:
- 发表时间:2003
- 期刊:
- 影响因子:0
- 作者:M.Arisawa;Y.Giga
- 通讯作者:Y.Giga
Topological degree for (S)+-mappings with maximal monotone perturbations and its applications to variational inequalities
- DOI:10.1016/j.na.2004.07.007
- 发表时间:2004-10
- 期刊:
- 影响因子:1.4
- 作者:Jun Kobayashi;M. Otani
- 通讯作者:Jun Kobayashi;M. Otani
Degree for subdifferential operators in Hilbert spaces
希尔伯特空间中次微分算子的次数
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:小林純;大谷光春
- 通讯作者:大谷光春
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ISHII Hitoshi其他文献
Symmetric mountain pass theorem and sublinear elliptic equations
对称山口定理和次线性椭圆方程
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Kakiuchi;K.;Suzuki;T.;Fukui;Y.;Torii;K.;Enokiya;R.;Machida M.;Matsumoto;R.;ISHII Hitoshi;Ryuji Kajikiya - 通讯作者:
Ryuji Kajikiya
Discrete Exterior Calculusによる離散微分幾何入門
离散微分几何与离散外微积分简介
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Kakiuchi;K.;Suzuki;T.;Fukui;Y.;Torii;K.;Enokiya;R.;Machida M.;Matsumoto;R.;ISHII Hitoshi;Ryuji Kajikiya;A. Tamura;廣瀬三平 - 通讯作者:
廣瀬三平
双曲型自由境界問題の数理解析及び数値解析(付着・剥離・衝突の数理解析)
双曲自由边界问题的数学和数值分析(粘附、剥离和碰撞的数学分析)
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Maekawa;Y.;Miura;H.;and Prange;C.;ISHII Hitoshi;小俣正朗 - 通讯作者:
小俣正朗
Delay-induced blow-up in delay differential equations
延迟微分方程中延迟引起的爆裂
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Maekawa;Y.;Miura;H.;and Prange;C.;ISHII Hitoshi;小俣正朗;Shigeaki Koike;T. Ishwiata - 通讯作者:
T. Ishwiata
Induced Nets and Hamiltonian Cycles in Claw-free Graphs
无爪图中的诱导网和哈密顿循环
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
N. J. Suematsu;Y. Mori;T. Amemiya;S. Nakata;廣瀬三平;ISHII Hitoshi;K. Ishii and M. Kimura;S. Yamada;Jun Fujisawa - 通讯作者:
Jun Fujisawa
ISHII Hitoshi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ISHII Hitoshi', 18)}}的其他基金
Deepening of the theory of viscosity solutions and its applications
粘度解理论的深化及其应用
- 批准号:
23244015 - 财政年份:2011
- 资助金额:
$ 7.74万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
RESEARCH ON THE THEORY OF VISCOSITY SOLUTIONS OF DIFFERENTIAL EQUATIONS AND ITS APPLICATIONS
微分方程粘度解理论及其应用研究
- 批准号:
18204009 - 财政年份:2006
- 资助金额:
$ 7.74万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Quick estimating method of giga-cycle fatigue properties by an intermittent ultrasonic loading
间歇超声加载千兆周疲劳性能快速估算方法
- 批准号:
13650082 - 财政年份:2001
- 资助金额:
$ 7.74万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on viscosity solutions of differential equations and their applications
微分方程粘性解及其应用研究
- 批准号:
12440044 - 财政年份:2000
- 资助金额:
$ 7.74万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Theory and applications of viscosity solutions
粘度溶液的理论与应用
- 批准号:
09440067 - 财政年份:1997
- 资助金额:
$ 7.74万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Joint Study on Viscosity Solutions and Their Applications
粘度溶液及其应用联合研究
- 批准号:
07044094 - 财政年份:1995
- 资助金额:
$ 7.74万 - 项目类别:
Grant-in-Aid for international Scientific Research
A study on nonlinear degenerate elliptic partial differential equations
非线性简并椭圆偏微分方程的研究
- 批准号:
02640150 - 财政年份:1990
- 资助金额:
$ 7.74万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
Study on Fatigue Slip Bands and Nucleation of Microcracks by Using Scanning Tunneling Microscope
扫描隧道显微镜研究疲劳滑移带和微裂纹形核
- 批准号:
02452093 - 财政年份:1990
- 资助金额:
$ 7.74万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)
相似海外基金
Canonical mean curvature flow and its application to evolution problems
正则平均曲率流及其在演化问题中的应用
- 批准号:
23H00085 - 财政年份:2023
- 资助金额:
$ 7.74万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Toward applications of the crystalline mean curvature flow
晶体平均曲率流的应用
- 批准号:
23K03212 - 财政年份:2023
- 资助金额:
$ 7.74万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometric analysis of mean curvature flow with dynamic contact angle structure
动态接触角结构平均曲率流动的几何分析
- 批准号:
23K12992 - 财政年份:2023
- 资助金额:
$ 7.74万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Singularities of Minimal Hypersurfaces and Lagrangian Mean Curvature Flow
最小超曲面的奇异性和拉格朗日平均曲率流
- 批准号:
2306233 - 财政年份:2023
- 资助金额:
$ 7.74万 - 项目类别:
Continuing Grant
Mean curvature flow of small sections of the tangent bundle
切束小截面的平均曲率流
- 批准号:
572922-2022 - 财政年份:2022
- 资助金额:
$ 7.74万 - 项目类别:
University Undergraduate Student Research Awards
Mean Curvature Flow and Singular Minimal Surfaces
平均曲率流和奇异极小曲面
- 批准号:
2203132 - 财政年份:2022
- 资助金额:
$ 7.74万 - 项目类别:
Standard Grant
Singularities of Minimal Hypersurfaces and Lagrangian Mean Curvature Flow
最小超曲面的奇异性和拉格朗日平均曲率流
- 批准号:
2203218 - 财政年份:2022
- 资助金额:
$ 7.74万 - 项目类别:
Continuing Grant
Research of submanifolds by using the mean curvature flow and Lie group actions, and its application to theoretical physics
利用平均曲率流和李群作用研究子流形及其在理论物理中的应用
- 批准号:
22K03300 - 财政年份:2022
- 资助金额:
$ 7.74万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Entropy in Mean Curvature Flow and Minimal Hypersurfaces
平均曲率流和最小超曲面中的熵
- 批准号:
2105576 - 财政年份:2021
- 资助金额:
$ 7.74万 - 项目类别:
Continuing Grant
Study on variational level set method for evolution of spirals by crystalline curvature flow
晶体曲率流螺旋演化的变分水平集方法研究
- 批准号:
21K03319 - 财政年份:2021
- 资助金额:
$ 7.74万 - 项目类别:
Grant-in-Aid for Scientific Research (C)