Flow patterns governed by fluid equation in earth sciences-numerical study from view points of dynamical systems-

地球科学中流体方程控制的流动模式-从动力系统的角度进行数值研究-

基本信息

  • 批准号:
    16340023
  • 负责人:
  • 金额:
    $ 10.69万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2004
  • 资助国家:
    日本
  • 起止时间:
    2004 至 2007
  • 项目状态:
    已结题

项目摘要

Flow pattern formation is studied in the framework of fluid equations employed in earth sciences, especially of the 2D Navier-Stokes equations on a rotating sphere. When the flow region is a whole sphere, westward circumpolar jets are observed to emerge from turbulent initial conditions. A scaling law is proposed for the strength and the width of these polar jets, which shows that the whole energy of the flow field is absorbed in these jets in the limit of large rotation rate. The zonal jet formation is also studied in the case of shallow water equation, where the jets emerge in the equatorial region rather than the polar regions. When the flow region is a rotating hemisphere, the boundary of which coincides with meridional lines, the westward intensified flow emerges under the forcing of zonal winds. The lstability of the westward intensified flow on the rotating hemisphere is studied, and the critical Hopf mode is found to have the largest amplitude near the point where the boundary flow leaves the west boundary. Flow pattern and its stability are studied also in a rotating polar cap, a circular bounded region with the center at the north pole and with inlet and outlet on the boundary. While in the linear solution the inlet flow goes through all the flow region, there emerges an isolated vortex in the central region near the north pole, and this nonlinear flow becomes unstable as the inlet flow rate is increased. In some chaotic dynamical system with small degrees of freedom, averaged dynamical quantities over unstable periodic orbits are studied especially when the period of the periodic orbits is large. Numerical results show that statistical properties of the orbital averages along the unstable periodic orbits agree with those along chaotic orbits in, for example, 1D map, but do not in 2D map or in some systems of ordinary differential equations.
在地球科学中使用的流体方程的框架下,特别是在旋转球体上的二维N-S方程的框架内,研究了流型的形成。当流动区域是一个完整的球体时,观察到从湍流初始条件中出现向西的绕极喷流。给出了极地射流强度和宽度的标度律,表明在大转速范围内,流场的全部能量都被这些极地射流吸收。在浅水方程的情况下,也研究了纬向急流的形成,其中急流出现在赤道区域而不是极地区域。当流动区域为旋转半球,其边界与子午线重合时,在纬向风的强迫作用下,出现向西加强的气流。研究了旋转半球上西向强化流的不稳定性,发现临界Hopf模在边界流离开西边界点附近最大。文中还研究了旋转极帽、圆周有界区域、中心在北极、进出口在边界上的流态及其稳定性。而在线性解中,进口流动贯穿整个流动区域,在靠近北极的中心区域出现孤立涡,并且随着进口流量的增加,这种非线性流动变得不稳定。在一些小自由度的混沌动力系统中,研究了不稳定周期轨道上的平均动力量,特别是当周期轨道的周期较大时。数值结果表明,不稳定周期轨道上轨道平均的统计特性与一维映射中混沌轨道上的统计特性一致,而在二维映射或某些常微分方程组中则不同。

项目成果

期刊论文数量(61)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Rossby waves and jets in a two-dimensional decaying turbulence on a rotating sphere.
旋转球体上二维衰减湍流中的罗斯贝波和射流。
Stability of four gyre flow pattern in a barotropic model on a rotating hemisphere
旋转半球正压模型中四旋流流型的稳定性
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    加藤忠明;西牧謙吾;原田正平編著;M. Yamada;Y. Taniguchi
  • 通讯作者:
    Y. Taniguchi
Stability of westward intensified flow on a rotating hemisphere.
旋转半球上西向强化流的稳定性。
On the Circumpolar Flows Energing in Two-Dimensional Barotropic Decaying Turbulence on a Rapidly Rotating Sphere
快速旋转球体二维正压衰变湍流中的绕极流激发
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Y.;Saiki;S. Takehiro
  • 通讯作者:
    S. Takehiro
Rossby waves and acceleration-deceleration of jets on a sphere or in a spherical shell
罗斯贝波和球体或球壳内射流的加速-减速
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hayashi;Y.-Y;Yamada;M.;Takehiro;S.;Yoden;S.;Ishioka;K
  • 通讯作者:
    K
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

YAMADA Michio其他文献

YAMADA Michio的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('YAMADA Michio', 18)}}的其他基金

Top-down synthesis of curved nanocarbon molecules by multiple cage-opening reactions
通过多次开笼反应自上而下合成弯曲纳米碳分子
  • 批准号:
    20K05472
  • 财政年份:
    2020
  • 资助金额:
    $ 10.69万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Molecular recognition of nanocarbons based on assembling porphyrins through dynamic covalent bonds
基于动态共价键组装卟啉的纳米碳分子识别
  • 批准号:
    16K17890
  • 财政年份:
    2016
  • 资助金额:
    $ 10.69万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Twisted pi-electronic molecular tweezers for chiral resolution of carbon nanotubes
用于碳纳米管手性拆分的扭转π电子分子镊子
  • 批准号:
    24750123
  • 财政年份:
    2012
  • 资助金额:
    $ 10.69万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Covariant Lyapunov analysis of solutions of the Navier-Stokes equations
纳维-斯托克斯方程解的协变李雅普诺夫分析
  • 批准号:
    22654014
  • 财政年份:
    2010
  • 资助金额:
    $ 10.69万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Flow pattern formation in a geophysical thermal convection system
地球物理热对流系统中流型的形成
  • 批准号:
    20340018
  • 财政年份:
    2008
  • 资助金额:
    $ 10.69万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
MIXTURE OF EXISTING CODE OF CRIMINAL PROCEDURE OF JAPAN AND FORMER CODE OF CRIMINAL PROCEDURE OF JAPAN
日本现行刑事诉讼法与旧日本刑事诉讼法的混合
  • 批准号:
    14520081
  • 财政年份:
    2002
  • 资助金额:
    $ 10.69万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Flow Pattern Formation in Turbulence on a Rotating Sphere.
旋转球体上湍流中流型的形成。
  • 批准号:
    13440121
  • 财政年份:
    2001
  • 资助金额:
    $ 10.69万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Data-Adapted Wavelets for Analysis of Observational Data
用于观测数据分析的数据自适应小波
  • 批准号:
    12554003
  • 财政年份:
    2000
  • 资助金额:
    $ 10.69万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Flow Pattern of Thermal Convection of Boussinesq Fluid with Phase Change of Water
水相变布辛涅斯克流体热对流流动模式
  • 批准号:
    10440118
  • 财政年份:
    1998
  • 资助金额:
    $ 10.69万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B).
Application of Wavelets to Observational Data Analysis
小波在观测数据分析中的应用
  • 批准号:
    09554002
  • 财政年份:
    1997
  • 资助金额:
    $ 10.69万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了