Flow Pattern Formation in Turbulence on a Rotating Sphere.
旋转球体上湍流中流型的形成。
基本信息
- 批准号:13440121
- 负责人:
- 金额:$ 8.58万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2001
- 资助国家:日本
- 起止时间:2001 至 2003
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Fluid motion on a rotating sphere often shows pattern formation phenomena never observed in a planer motion because of the influence of the compactness of the flow domain and the differential rotation, and is strongly related to fundamental properties of geophysical flows. Mainly in this project, we studied flow pattern formation arising from turbulent initial conditions, and related problems in fluid dynamics and numerical analysis. We first studied 2D fluid motion in a circular domain on a rotating sphere, and found that in the case of southern hemisphere with the rigid boundary at the equator, eastward circumpolar flow is spontaneously formed, in contrast with the whole sphere case where westward circumpolar jets emerge. The momentum transfer by the Rossby wave is important in this process, and we gave a theoretical description for the jet formation in the frame of weakly nonlinear theory. Instability of westward intensified flows were also studied with the strength of the forcing wind being a bifurcation parameter. A Hopf-type instatility followed by a supercritical bifurcation, is found as the forcing wind increases, and a relation between the instability and configuration of gyres is discussed. Phase change of water is an important factor of general circulation on the earth, and we study flow patterns generated by moist convection and its relation to global circulation from a view point of active rainfall area in tropical zone. Numerical methods are quite important in these studies, and we prepared several types of computer codes for numerical simulation, and also proposed some new numerical methods for a fluid equation on a sphere using a conformal projection to a planer disk, and also for fluid equation on a bounded domain by using a, spectral method with Jacobi polynomials. Mathematical properties of fluid equation related to turbulence dynamics are also studied.
由于流动域的致密性和差异旋转的影响,旋转球体上的流体运动常常表现出平面运动中从未观察到的图案形成现象,并且与地球物理流动的基本性质密切相关。本计画主要研究由紊流初始条件所引起的流态形成,以及相关的流体力学与数值分析问题。我们首先研究了旋转球体上圆形区域内的二维流体运动,发现在南半球赤道刚性边界的情况下,向东的绕极流是自发形成的,而在整个球体的情况下,向西的绕极喷流则是自发形成的。在这一过程中,Rossby波的动量传递是重要的,我们在弱非线性理论框架下对射流的形成进行了理论描述。以强迫风强度为分岔参数,研究了向西向增强气流的不稳定性。随着强迫风的增加,出现了一个Hopf型不稳定性,随后出现了一个超临界分岔,并讨论了不稳定性与涡旋结构之间的关系。水的相变是地球大气环流的一个重要因素,本文从热带地区降水活跃区的角度研究了湿对流产生的流型及其与全球环流的关系。数值方法在这些研究中是非常重要的,我们编写了几种类型的计算机程序进行数值模拟,并提出了一些新的数值方法,对球上的流体方程使用共形投影到平面圆盘上,以及对有界区域上的流体方程使用Jacobi多项式的谱方法。研究了与湍流动力学有关的流体方程的数学性质。
项目成果
期刊论文数量(73)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
J.Yano: "Wavelet Decomposition of the Spatial Structure Associated with Mesoscale Organized Convection, Part I"Journal of Atmospheric Sciences. 58-4. 850-867 (2001)
J.Yano:“与中尺度组织对流相关的空间结构的小波分解,第一部分”大气科学杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y.O.Takahashi: "Topigraphically Induced North-South Asymmetry of the Meridional Circulation in the Martian Atmosphere"J.Geophys.Res.. (accepted).
Y.O.Takahashi:“火星大气中经向环流的地形引起的南北不对称”J.Geophys.Res..(已接受)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
S.Takehiro: "Liinear stability of thermal convection in rotating systems with fixed heat flux boundaries"Geophys.Astrophys.Fliud Dyn.. Vol.96. 439-459 (2002)
S.Takehiro:“具有固定热通量边界的旋转系统中热对流的线性稳定性”Geophys.Astrophys.Fliud Dyn.. Vol.96。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
A survey on class of exact solutions of the Navier-Stokes equations and a model for turbulence
纳维-斯托克斯方程精确解类综述及湍流模型
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:OHKITANI;K.
- 通讯作者:K.
Spectral method for the shallow water equation in a disk, I.Fundamentals
圆盘中浅水方程的谱法,I.基础知识
- DOI:
- 发表时间:2003
- 期刊:
- 影响因子:0
- 作者:ISHIOKA;K.
- 通讯作者:K.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YAMADA Michio其他文献
YAMADA Michio的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YAMADA Michio', 18)}}的其他基金
Top-down synthesis of curved nanocarbon molecules by multiple cage-opening reactions
通过多次开笼反应自上而下合成弯曲纳米碳分子
- 批准号:
20K05472 - 财政年份:2020
- 资助金额:
$ 8.58万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular recognition of nanocarbons based on assembling porphyrins through dynamic covalent bonds
基于动态共价键组装卟啉的纳米碳分子识别
- 批准号:
16K17890 - 财政年份:2016
- 资助金额:
$ 8.58万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Twisted pi-electronic molecular tweezers for chiral resolution of carbon nanotubes
用于碳纳米管手性拆分的扭转π电子分子镊子
- 批准号:
24750123 - 财政年份:2012
- 资助金额:
$ 8.58万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Covariant Lyapunov analysis of solutions of the Navier-Stokes equations
纳维-斯托克斯方程解的协变李雅普诺夫分析
- 批准号:
22654014 - 财政年份:2010
- 资助金额:
$ 8.58万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Flow pattern formation in a geophysical thermal convection system
地球物理热对流系统中流型的形成
- 批准号:
20340018 - 财政年份:2008
- 资助金额:
$ 8.58万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Flow patterns governed by fluid equation in earth sciences-numerical study from view points of dynamical systems-
地球科学中流体方程控制的流动模式-从动力系统的角度进行数值研究-
- 批准号:
16340023 - 财政年份:2004
- 资助金额:
$ 8.58万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
MIXTURE OF EXISTING CODE OF CRIMINAL PROCEDURE OF JAPAN AND FORMER CODE OF CRIMINAL PROCEDURE OF JAPAN
日本现行刑事诉讼法与旧日本刑事诉讼法的混合
- 批准号:
14520081 - 财政年份:2002
- 资助金额:
$ 8.58万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Data-Adapted Wavelets for Analysis of Observational Data
用于观测数据分析的数据自适应小波
- 批准号:
12554003 - 财政年份:2000
- 资助金额:
$ 8.58万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Flow Pattern of Thermal Convection of Boussinesq Fluid with Phase Change of Water
水相变布辛涅斯克流体热对流流动模式
- 批准号:
10440118 - 财政年份:1998
- 资助金额:
$ 8.58万 - 项目类别:
Grant-in-Aid for Scientific Research (B).
Application of Wavelets to Observational Data Analysis
小波在观测数据分析中的应用
- 批准号:
09554002 - 财政年份:1997
- 资助金额:
$ 8.58万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似海外基金
Atmospheric and Geophysical Fluid Dynamics
大气和地球物理流体动力学
- 批准号:
RGPIN-2017-04068 - 财政年份:2021
- 资助金额:
$ 8.58万 - 项目类别:
Discovery Grants Program - Individual
Atmospheric and Geophysical Fluid Dynamics
大气和地球物理流体动力学
- 批准号:
RGPIN-2017-04068 - 财政年份:2020
- 资助金额:
$ 8.58万 - 项目类别:
Discovery Grants Program - Individual
Analysis of dispersive effects for partial differential equations appeared in the geophysical fluid dynamics
地球物理流体动力学中偏微分方程的色散效应分析
- 批准号:
20J20941 - 财政年份:2020
- 资助金额:
$ 8.58万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Atmospheric and Geophysical Fluid Dynamics
大气和地球物理流体动力学
- 批准号:
RGPIN-2017-04068 - 财政年份:2019
- 资助金额:
$ 8.58万 - 项目类别:
Discovery Grants Program - Individual
Mathematical analysis of anisotropy and singular limit problems in the equations of geophysical fluid dynamics
地球物理流体动力学方程各向异性和奇异极限问题的数学分析
- 批准号:
19K03584 - 财政年份:2019
- 资助金额:
$ 8.58万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Interdisciplinary Research and Training at the Geophysical Fluid Dynamics Program
地球物理流体动力学项目的跨学科研究和培训
- 批准号:
1829864 - 财政年份:2019
- 资助金额:
$ 8.58万 - 项目类别:
Continuing Grant
Atmospheric and Geophysical Fluid Dynamics
大气和地球物理流体动力学
- 批准号:
RGPIN-2017-04068 - 财政年份:2018
- 资助金额:
$ 8.58万 - 项目类别:
Discovery Grants Program - Individual
Atmospheric and Geophysical Fluid Dynamics
大气和地球物理流体动力学
- 批准号:
RGPIN-2017-04068 - 财政年份:2017
- 资助金额:
$ 8.58万 - 项目类别:
Discovery Grants Program - Individual
Variational principles for stochastic parameterisations in geophysical fluid dynamics
地球物理流体动力学中随机参数化的变分原理
- 批准号:
EP/N023781/1 - 财政年份:2016
- 资助金额:
$ 8.58万 - 项目类别:
Research Grant
Atmospheric and geophysical fluid dynamics
大气和地球物理流体动力学
- 批准号:
9627-2009 - 财政年份:2016
- 资助金额:
$ 8.58万 - 项目类别:
Discovery Grants Program - Individual