Application of Wavelets to Observational Data Analysis
小波在观测数据分析中的应用
基本信息
- 批准号:09554002
- 负责人:
- 金额:$ 7.81万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:1997
- 资助国家:日本
- 起止时间:1997 至 1999
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Application of wavelet analysis to observational data is studied. Taking an acceleration data of earthquake as an example, we propose a data correction method consisting of biorthogonal wavelet expansion and Lagrange multiplier method. This method is based on wavelet expansion and enables us to correct the data locally in time-frequency domain. Moreover we devised an algorithm to generate biorthogonal wavelets which diagonalize/semi-diagonalize a class of linear operators in-variant to scale transformation, in order to reduce numerical task in the data correction including, integration, for example. We applied this algorithm to Riesz potential, derivative Hilbert transformation and Abel transformation. Numerical inspection shows that elements of the representation matrices decay rapidly in the off-diagonal region. This means that the matrices can accually be treated as band-diagonal ones, and permits us fast calculation. We also studied engineering application of wavelets to problems including friction and oscillation absorption.
研究了小波分析到观察数据的应用。以地震的加速数据为例,我们提出了一种数据校正方法,该方法包括由生物表定小波扩展和Lagrange乘数法组成。此方法基于小波的扩展,使我们能够在时频域中校正本地数据。此外,我们设计了一种算法来生成生物三相的小波,该小波将一类线性运算符对准/半分子对扩展转换的变化,以减少数据校正中的数值任务,例如集成。我们将此算法应用于Riesz电位,衍生性希尔伯特转化和亚伯转化。数值检查表明,在非对角线区域中,表示矩阵的元素衰减迅速。这意味着可以将矩阵视为带对角的矩阵,并允许我们快速计算。我们还研究了小波在包括摩擦和振荡吸收在内的问题上的工程应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
M.Sakamoto: "Wavelet Akalysis of Acoustical Signals" Journal of Japan Society for Simulation Technology. 27-34 (1997)
M.Sakamoto:“声学信号的小波分析”日本模拟技术学会杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
S.Sakakibara: "A Technique for Reducing Noise in Laboratory Data" Wavelets and Their Applications. (1998)
S.Sakakibara:“一种减少实验室数据噪声的技术”小波及其应用。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
S.Sakakibara: "Design of a Wavelet Package on Mathematica Version 3" Innovation in Mathematics(Proc.2nd Mathematics Sym.). 2. 427-434 (1997)
S.Sakakibara:“Mathematica 第 3 版上小波包的设计”数学创新(Proc.2nd Mathematica Sym.)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M. Kobayashi, M. Sakamoto, T. Saito, Y. Hashimoto, M. Nishimura, and K. Suzuki: "Wavelet Analysis for Text-to-Speech systems in M. Kobayashi, (ed.)"Wavelets and Their Applications : Case Studies. SIAM. 75-100 (1998)
M. Kobayashi、M. Sakamoto、T. Saito、Y. Hashimoto、M. Nishimura 和 K. Suzuki:“M. Kobayashi(编辑)中的文本到语音系统的小波分析”小波及其应用:
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YAMADA Michio其他文献
YAMADA Michio的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YAMADA Michio', 18)}}的其他基金
Top-down synthesis of curved nanocarbon molecules by multiple cage-opening reactions
通过多次开笼反应自上而下合成弯曲纳米碳分子
- 批准号:
20K05472 - 财政年份:2020
- 资助金额:
$ 7.81万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular recognition of nanocarbons based on assembling porphyrins through dynamic covalent bonds
基于动态共价键组装卟啉的纳米碳分子识别
- 批准号:
16K17890 - 财政年份:2016
- 资助金额:
$ 7.81万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Twisted pi-electronic molecular tweezers for chiral resolution of carbon nanotubes
用于碳纳米管手性拆分的扭转π电子分子镊子
- 批准号:
24750123 - 财政年份:2012
- 资助金额:
$ 7.81万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Covariant Lyapunov analysis of solutions of the Navier-Stokes equations
纳维-斯托克斯方程解的协变李雅普诺夫分析
- 批准号:
22654014 - 财政年份:2010
- 资助金额:
$ 7.81万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Flow pattern formation in a geophysical thermal convection system
地球物理热对流系统中流型的形成
- 批准号:
20340018 - 财政年份:2008
- 资助金额:
$ 7.81万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Flow patterns governed by fluid equation in earth sciences-numerical study from view points of dynamical systems-
地球科学中流体方程控制的流动模式-从动力系统的角度进行数值研究-
- 批准号:
16340023 - 财政年份:2004
- 资助金额:
$ 7.81万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
MIXTURE OF EXISTING CODE OF CRIMINAL PROCEDURE OF JAPAN AND FORMER CODE OF CRIMINAL PROCEDURE OF JAPAN
日本现行刑事诉讼法与旧日本刑事诉讼法的混合
- 批准号:
14520081 - 财政年份:2002
- 资助金额:
$ 7.81万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Flow Pattern Formation in Turbulence on a Rotating Sphere.
旋转球体上湍流中流型的形成。
- 批准号:
13440121 - 财政年份:2001
- 资助金额:
$ 7.81万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Data-Adapted Wavelets for Analysis of Observational Data
用于观测数据分析的数据自适应小波
- 批准号:
12554003 - 财政年份:2000
- 资助金额:
$ 7.81万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Flow Pattern of Thermal Convection of Boussinesq Fluid with Phase Change of Water
水相变布辛涅斯克流体热对流流动模式
- 批准号:
10440118 - 财政年份:1998
- 资助金额:
$ 7.81万 - 项目类别:
Grant-in-Aid for Scientific Research (B).
相似海外基金
Semantic feature extraction from signal and image using lifting wavelet filters.
使用提升小波滤波器从信号和图像中提取语义特征。
- 批准号:
15300048 - 财政年份:2003
- 资助金额:
$ 7.81万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Wavelet like basis on manifolds and their applications to harmonic analysis
流形上的类小波基础及其在调和分析中的应用
- 批准号:
14540154 - 财政年份:2002
- 资助金额:
$ 7.81万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Data-Adapted Wavelets for Analysis of Observational Data
用于观测数据分析的数据自适应小波
- 批准号:
12554003 - 财政年份:2000
- 资助金额:
$ 7.81万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Fundamental Study on Image Coding for High Quality Image Communications
高质量图像通信的图像编码基础研究
- 批准号:
04452180 - 财政年份:1992
- 资助金额:
$ 7.81万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)