Studies on Electronic Structure of p Electron Systems and Nanostructure Materials Based on First-Prinsiples Methods for Strongly Correlated Electrons

基于强关联电子第一性原理方法的p电子体系和纳米结构材料的电子结构研究

基本信息

  • 批准号:
    16340100
  • 负责人:
  • 金额:
    $ 5.63万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2004
  • 资助国家:
    日本
  • 起止时间:
    2004 至 2007
  • 项目状态:
    已结题

项目摘要

The goal of this project is to develop a hybrid computational method for electronic structure calculations of strongly correlated electron systems by combining the density functional theory and solvers for models of strongly correlated lattice models. By establishing the method, we apply it to p electron systems and nanostructure materials. This hybrid method consists of the following three procedures: (1) Calculate global electronic band structure by the density functional theory using the local density approximation and GW approximation (2) Eliminate and trace out the high-energy scale by downfolding and derive low-energy effective models (3) Solve the low-energy models by reliable low-energy solvers. This scheme has been applied to Sr2VO4. We have revealed that Sr2VO4 is near the metal-insulator phase boundary with antiferromagnetic order and shows complicated spin-orbital orders. Next we have applied to electronic structure calculation of YVO3. It shows the insulating ground state … More with the gap given by 0.9 eV, which is in agreement with the experimental gap, 1.0eV. Based on these successful results, we have applied this scheme to p-electron systems. In p-electron systems, we have employed the plane-wave basis. This has been applied to an organic conductor, BEDT-TTF compound and we have derived the low-energy effective Hamiltonian. We have also examined the efficiency for excitation spectra. The downfolding scheme has been applied to GaAs and LiF and the optical conductivity has been calculated. These results show that excitonic effects are correctly captured by this scheme. In this project, several different types of low-energy solvers have also been developed. In addition to the path integral renormalization group, Gaussian basis Monte Carlo and improved variational Monte Cairo methods have been developed and we have clarified that these method may be used as a highly accurate low-energy solver essentially without the minus sign problem. By these achievements, a new type of electronic structure calculation method based on the three-stage scheme for strongly correlated electron systems including p-electron compounds are now well established. Less
本项目的目标是通过结合密度泛函理论和强关联晶格模型的求解器,开发一种用于强关联电子系统的电子结构计算的混合计算方法。通过建立该方法,我们将其应用于p电子系统和纳米结构材料。该混合方法包括以下三个步骤:(1)利用密度泛函理论,在局域密度近似和GW近似下计算整体电子能带结构(2)通过下折消除和追踪高能尺度,得到低能有效模型(3)利用可靠的低能求解器求解低能模型。该方案已被应用到Sr 2 VO 4。我们发现Sr_2VO_4在金属-绝缘体相界附近具有反铁磁有序,并显示出复杂的自旋轨道有序。接下来我们应用于YVO 3的电子结构计算。它显示了绝缘基态 ...更多信息 给出的差距为0.9 eV,这与实验间隙1.0 eV一致。基于这些成功的结果,我们已经将该方案应用到p电子系统。在p电子系统中,我们采用了平面波基。这已被应用到一个有机导体,BEDT-TTF化合物,我们推导出的低能有效哈密顿量。我们还研究了激发光谱的效率。下折方案已被应用到GaAs和LiF和光学电导率已被计算。这些结果表明,激子效应是正确的捕获该计划。在这个项目中,还开发了几种不同类型的低能耗求解器。除了路径积分重整化群,高斯基Monte Carlo和改进的变分Monte Cairo方法已经开发出来,我们已经澄清,这些方法可以用作一个高精度的低能量求解器基本上没有负号的问题。通过这些研究成果,建立了一种新的基于三阶段方案的强关联电子体系(包括p电子化合物)的电子结构计算方法。少

项目成果

期刊论文数量(66)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
強相関電子系に対する第一原理計算:GW-based ab initio downfoldng法の開発と実装
强相关电子系统的第一性原理计算:基于引力波的从头向下折叠方法的开发和实施
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Nakamura;T. Kosugi;Y. Yoshimoto;R. Arita;M. Imada;田原 大資;中村 和磨
  • 通讯作者:
    中村 和磨
ガウス基底モンテカルロ法による二次元ハバード模型の研究
基于高斯基蒙特卡罗方法的二维哈伯德模型研究
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Nakamura;T. Kosugi;Y. Yoshimoto;R. Arita;M. Imada;田原 大資;中村 和磨;M. Imada;相見猛
  • 通讯作者:
    相見猛
Recent Development in Theory of Metal-Insulator Transitions and Comparisons with Experiments
金属-绝缘体转变理论的最新进展及其与实验的比较
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Tahara;M. Imada;田原大資;M. Imada
  • 通讯作者:
    M. Imada
Insights from Path-Integral Renormalization Group (PIRG) Method
路径积分重正化群 (PIRG) 方法的见解
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Hanasaki;M. Imada;M. Imada;M. lmada
  • 通讯作者:
    M. lmada
Applications of Path-Iintegral Renormalization Group Method Combined with Density Functional Theory
路径积分重正化群方法与密度泛函理论的应用
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    岡本 博;他;K.Nakamura;Y. Imai
  • 通讯作者:
    Y. Imai
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

IMADA Masatoshi其他文献

IMADA Masatoshi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('IMADA Masatoshi', 18)}}的其他基金

Materials Design and Exploration of Functions for Strongly Correlated Materials - Challenges to Non-equilibrium and Non-Periodic Systems
强相关材料的材料设计和功能探索——对非平衡和非周期系统的挑战
  • 批准号:
    16H06345
  • 财政年份:
    2016
  • 资助金额:
    $ 5.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Physics of Quantum Phase Transitions - Topological Quantum Criticality, Quantum Multi-Criticality and Novel Quantum Phases
量子相变物理学 - 拓扑量子临界性、量子多临界性和新型量子相
  • 批准号:
    22340090
  • 财政年份:
    2010
  • 资助金额:
    $ 5.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Novel quantum phenomena emerging near quantum critical point
量子临界点附近出现的新量子现象
  • 批准号:
    17071003
  • 财政年份:
    2005
  • 资助金额:
    $ 5.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
Theories of anomalous metallic state and Mott trasition
反常金属态和莫特转变理论
  • 批准号:
    07237102
  • 财政年份:
    1995
  • 资助金额:
    $ 5.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas

相似海外基金

Disorder and the Emergence of Inhomogeneous Phases in Strongly Correlated Electron Systems
强相关电子系统中的无序和非均匀相的出现
  • 批准号:
    2231821
  • 财政年份:
    2023
  • 资助金额:
    $ 5.63万
  • 项目类别:
    Continuing Grant
Subcycle-pulse engineering in strongly correlated electron systems
强相关电子系统中的亚周期脉冲工程
  • 批准号:
    23K13066
  • 财政年份:
    2023
  • 资助金额:
    $ 5.63万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Ultrafast spectroscopy simulation of low-dimensional strongly correlated electron systems using tensor network
使用张量网络的低维强相关电子系统的超快光谱模拟
  • 批准号:
    23K03286
  • 财政年份:
    2023
  • 资助金额:
    $ 5.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Elucidation of local parity mixing states in uranium-based strongly-correlated-electron systems
铀基强相关电子系统中局域宇称混合态的阐明
  • 批准号:
    23H01113
  • 财政年份:
    2023
  • 资助金额:
    $ 5.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Ultra-low temperature scanning-tunneling microscopy studies on bottom-up strongly correlated electron systems
自下而上强相关电子系统的超低温扫描隧道显微镜研究
  • 批准号:
    22K18696
  • 财政年份:
    2022
  • 资助金额:
    $ 5.63万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Sustained development and strengthening of the international advanced research cooperation network for uranium-based compounds of strongly correlated electron systems
持续发展和加强强相关电子系统铀基化合物国际先进研究合作网络
  • 批准号:
    21KK0046
  • 财政年份:
    2021
  • 资助金额:
    $ 5.63万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
Explorations of ultrafast quantum phase transitions in strongly correlated electron systems by high-intensity terahertz/mid-infrared pulses
高强度太赫兹/中红外脉冲探索强相关电子系统中的超快量子相变
  • 批准号:
    21H04988
  • 财政年份:
    2021
  • 资助金额:
    $ 5.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Exciton Spectroscopy and Engineering in Strongly Correlated Electron Systems
强相关电子系统中的激子能谱和工程
  • 批准号:
    2104833
  • 财政年份:
    2021
  • 资助金额:
    $ 5.63万
  • 项目类别:
    Continuing Grant
Development of a numerical solver "correlation eraser" and application to strongly correlated electron systems
数值求解器“相关擦除器”的开发及其在强相关电子系统中的应用
  • 批准号:
    21K03440
  • 财政年份:
    2021
  • 资助金额:
    $ 5.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
In-situ NMR studies of strongly correlated electron systems under light illumination
光照射下强相关电子系统的原位核磁共振研究
  • 批准号:
    21K18897
  • 财政年份:
    2021
  • 资助金额:
    $ 5.63万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了