Interface motion and blow-up phenomena in nonlinear partial differential equations
非线性偏微分方程中的界面运动和爆炸现象
基本信息
- 批准号:17340044
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2005
- 资助国家:日本
- 起止时间:2005 至 2007
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The aim of this research project is to make a theoretical study of various nonlinear problems related to interfacial motions and blow-up phenomena, by developing asymptotic methods based on the theory of infinite dimensional dynamical systems and stochastic methods, and also performing numerical simulations if necessary. We have obtained the following results.(1) We have given an optimal estimate concerning the singular limit of Allen-Cahn type nonlinear diffusion equations, that has not been known previously. We also obtained similar results for FitzHugh-Nagumo systems and Lotka-Volterra competition systems.(2) We have clarified the global dynamics of blow-up solutions in nonlinear diffusion equations. This was made possible by extending the existing theory on global attractors to the case where blow-up occurs.(3) In nonlinear heat equations with power nonlinearity, the blow-up of solutions is classified into type I and type II, the latter being much more difficult to analyze than the … More former. By using a topological method based on the braid group theory, we have succeeded in determining all possible type II blow-up rates.(4) We studied the stationary problem for the Allen-Cahn equation on the 2-dimensional space having lattice periodicity by using variational methods. We have shown that a necessary and sufficient condition for the existence of multi-layered stationary solution is that the set of single layered solutions has a gap somewhere ; in other words, this set should not be a continuum (foliation).(5) We considered periodic traveling waves in a two-dimensional infinite strip whose boundaries are saw-tooth shaped. We determined the homogenization limit of such traveling waves as one lets the boundary undulation finer and finer.(6) Various partial differential equations are derived from microscopic models via hydrodynamic limit. Those equations include the Stefan problem and some stochastic differential equations.(7) Regularity of free boundaries arising in various elliptic equations such as the combustion model has bee established.(8) Stability of V-shaped traveling wave in the equation of curvature-dependent motion has been established. Less
该研究项目的目的是通过基于无限尺寸动态系统和随机方法的理论来开发渐近方法,对与界面运动和爆炸现象相关的各种非线性问题进行理论研究,并在必要时执行数值模拟。我们已经获得了以下结果。(1)我们对Allen-CAHN型非线性扩散方程的奇异极限进行了最佳估计,这还没有获得针对Fitzhugh-Nagumo Systems和Lotka-Volterra Systems的类似结果。(2)我们已经确定了非线性扩散方程中爆破溶液的全球动力学。通过将现有关于全球吸引子的现有理论扩展到发生爆炸的情况。(3)在具有功率非线性的非线性热方程式中,解决方案的爆炸被归类为I型和II型,后者比…更难以分析。通过使用基于编织组理论的拓扑方法,我们成功地确定了所有可能的II型爆炸率。(4)我们在使用变异方法的两维空间上研究了艾伦-CAHN方程的固定问题。我们已经表明,多层固定解决方案存在的必要条件是,单个层次溶液的集合在某个地方具有差距。换句话说,这组不应是连续的(叶子)。(5)我们考虑了二维无限条带的周期性行进波,其边界是锯齿状的。我们确定了这样的行进波的均质化极限,例如使边界起伏越来越细。(6)各种偏微分方程通过微观模型通过流体动力学极限得出。这些方程式包括Stefan问题和一些随机微分方程。(7)在各种椭圆方程(例如组合模型)中产生的自由边界的规律性已建立。(8)已经确定了V形行进波的稳定性在曲率依赖性运动方程中的稳定性。较少的
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Immediate Regularization after Blow-up
- DOI:10.1137/040613299
- 发表时间:2005-02
- 期刊:
- 影响因子:0
- 作者:M. Fila;H. Matano;P. Polácik
- 通讯作者:M. Fila;H. Matano;P. Polácik
On the steadily rotating spirals
在稳定旋转的螺旋上
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:Nakamura K.-I.(Guo;J.-S.;Ogiwara;T.;Tsai;J.-C.)
- 通讯作者:J.-C.)
On the necessity of gaps
- DOI:10.4171/jems/57
- 发表时间:2006-06
- 期刊:
- 影响因子:2.6
- 作者:H. Matano;P. Rabinowitz
- 通讯作者:H. Matano;P. Rabinowitz
Periodic taveling waves in an undulating band domain and their homogenization limit
起伏带域中的周期塔弗林波及其均匀化极限
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:H.Matano;他
- 通讯作者:他
Blow-up in nonlinear Heat equations with supercritical power nonlinearity
具有超临界功率非线性的非线性热方程中的爆炸
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:B.Fiedler;他;H.Matano
- 通讯作者:H.Matano
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MATANO Hiroshi其他文献
MATANO Hiroshi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MATANO Hiroshi', 18)}}的其他基金
Analysis of interface motion and blow-up phenomena in nonlinear partial differential equations
非线性偏微分方程中的界面运动和爆炸现象分析
- 批准号:
20340033 - 财政年份:2008
- 资助金额:
$ 10万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Qualitative theory and asymptotic analysis of nonlinear partial differential equations
非线性偏微分方程的定性理论与渐近分析
- 批准号:
13440028 - 财政年份:2001
- 资助金额:
$ 10万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Study of the Mathematical structure of singularities
奇点的数学结构研究
- 批准号:
11214202 - 财政年份:1999
- 资助金额:
$ 10万 - 项目类别:
Grant-in-Aid for Scientific Research on Priority Areas (B)
Study of singularities arising in nonlinear partial differential differential equations and asymptotic methods
非线性偏微分方程中奇异性的研究和渐近方法
- 批准号:
09304019 - 财政年份:1997
- 资助金额:
$ 10万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Analysis of the structure of solutions of nonlinear partial differential equations
非线性偏微分方程解的结构分析
- 批准号:
07454031 - 财政年份:1995
- 资助金额:
$ 10万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似国自然基金
发展型偏微分方程组中基于部分观测数据的系数辨识问题
- 批准号:
- 批准年份:2020
- 资助金额:51 万元
- 项目类别:面上项目
具部分信息平均场时滞随机微分方程最优控制问题研究
- 批准号:11801154
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
随机偏微分方程的Schauder理论及其应用
- 批准号:11801084
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
部分信息下带马尔科夫链的正倒向随机系统最优控制理论及其应用
- 批准号:61573217
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
非线性偏微分方程多解计算的大范围收敛性算法及其应用研究
- 批准号:91430107
- 批准年份:2014
- 资助金额:65.0 万元
- 项目类别:重大研究计划
相似海外基金
Partial differential equation: Schrodinger operator and long-time dynamics
偏微分方程:薛定谔算子和长期动力学
- 批准号:
FT230100588 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
ARC Future Fellowships
Learning Partial Differential Equation (PDE) and Beyond
学习偏微分方程 (PDE) 及其他内容
- 批准号:
2309551 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Interplay Between Data and Partial Differential Equation Models Through the Lens of Kinetic Equations
通过动力学方程的视角观察数据和偏微分方程模型之间的相互作用
- 批准号:
2308440 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Geometry of Special Lagrangian equation
特殊拉格朗日方程的几何
- 批准号:
22K13909 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
3階微分方程式で表される粘弾性振動系をニューラルネットワークでどう同定するか
如何使用神经网络识别由三阶微分方程表示的粘弹性振动系统
- 批准号:
22K20409 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Grant-in-Aid for Research Activity Start-up