Interface motion and blow-up phenomena in nonlinear partial differential equations

非线性偏微分方程中的界面运动和爆炸现象

基本信息

  • 批准号:
    17340044
  • 负责人:
  • 金额:
    $ 10万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2005
  • 资助国家:
    日本
  • 起止时间:
    2005 至 2007
  • 项目状态:
    已结题

项目摘要

The aim of this research project is to make a theoretical study of various nonlinear problems related to interfacial motions and blow-up phenomena, by developing asymptotic methods based on the theory of infinite dimensional dynamical systems and stochastic methods, and also performing numerical simulations if necessary. We have obtained the following results.(1) We have given an optimal estimate concerning the singular limit of Allen-Cahn type nonlinear diffusion equations, that has not been known previously. We also obtained similar results for FitzHugh-Nagumo systems and Lotka-Volterra competition systems.(2) We have clarified the global dynamics of blow-up solutions in nonlinear diffusion equations. This was made possible by extending the existing theory on global attractors to the case where blow-up occurs.(3) In nonlinear heat equations with power nonlinearity, the blow-up of solutions is classified into type I and type II, the latter being much more difficult to analyze than the … More former. By using a topological method based on the braid group theory, we have succeeded in determining all possible type II blow-up rates.(4) We studied the stationary problem for the Allen-Cahn equation on the 2-dimensional space having lattice periodicity by using variational methods. We have shown that a necessary and sufficient condition for the existence of multi-layered stationary solution is that the set of single layered solutions has a gap somewhere ; in other words, this set should not be a continuum (foliation).(5) We considered periodic traveling waves in a two-dimensional infinite strip whose boundaries are saw-tooth shaped. We determined the homogenization limit of such traveling waves as one lets the boundary undulation finer and finer.(6) Various partial differential equations are derived from microscopic models via hydrodynamic limit. Those equations include the Stefan problem and some stochastic differential equations.(7) Regularity of free boundaries arising in various elliptic equations such as the combustion model has bee established.(8) Stability of V-shaped traveling wave in the equation of curvature-dependent motion has been established. Less
本研究项目的目的是通过开发基于无限维动力系统理论和随机方法的渐近方法,并在必要时进行数值模拟,对与界面运动和爆破现象相关的各种非线性问题进行理论研究。我们得到了以下结果。(1)本文给出了Allen-Cahn型非线性扩散方程奇异极限的一个最优估计,这是以前所不知道的。对于FitzHugh-Nagumo系统和Lotka-Volterra竞争系统,我们也得到了类似的结果. (2)我们阐明了非线性扩散方程爆破解的整体动力学性质。这是通过将现有的全局吸引子理论扩展到发生爆破的情况而实现的。(3)在具有幂非线性项的非线性热方程中,解的爆破分为第一类和第二类,第二类比第一类更难分析。 ...更多信息 前者通过使用基于辫群理论的拓扑方法,我们成功地确定了所有可能的II型爆破率。(4)利用变分方法研究了二维格点周期空间上Allen-Cahn方程的平稳性问题。我们证明了多层定态解存在的一个充分必要条件是单层解的集合在某处有一个缺口,换句话说,这个集合不应该是一个连续体(叶理)。(5)我们考虑了边界为锯齿形的二维无限条中的周期行波。当边界起伏越来越细时,我们确定了这种行波的均匀化极限。(6)从微观模型出发,通过流体力学极限推导出各种偏微分方程。这些方程包括Stefan问题和一些随机微分方程。(7)建立了燃烧模型等各种椭圆方程中自由边界的规律性。(8)建立了曲率相关运动方程中V形行波的稳定性。少

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the steadily rotating spirals
在稳定旋转的螺旋上
Immediate Regularization after Blow-up
  • DOI:
    10.1137/040613299
  • 发表时间:
    2005-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Fila;H. Matano;P. Polácik
  • 通讯作者:
    M. Fila;H. Matano;P. Polácik
Blow-up in nonlinear Heat equations with supercritical power nonlinearity
具有超临界功率非线性的非线性热方程中的爆炸
Periodic taveling waves in an undulating band domain and their homogenization limit
起伏带域中的周期塔弗林波及其均匀化极限
On the necessity of gaps
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MATANO Hiroshi其他文献

MATANO Hiroshi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MATANO Hiroshi', 18)}}的其他基金

Analysis of interface motion and blow-up phenomena in nonlinear partial differential equations
非线性偏微分方程中的界面运动和爆炸现象分析
  • 批准号:
    20340033
  • 财政年份:
    2008
  • 资助金额:
    $ 10万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Qualitative theory and asymptotic analysis of nonlinear partial differential equations
非线性偏微分方程的定性理论与渐近分析
  • 批准号:
    13440028
  • 财政年份:
    2001
  • 资助金额:
    $ 10万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Study of the Mathematical structure of singularities
奇点的数学结构研究
  • 批准号:
    11214202
  • 财政年份:
    1999
  • 资助金额:
    $ 10万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas (B)
Study of singularities arising in nonlinear partial differential differential equations and asymptotic methods
非线性偏微分方程中奇异性的研究和渐近方法
  • 批准号:
    09304019
  • 财政年份:
    1997
  • 资助金额:
    $ 10万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Analysis of the structure of solutions of nonlinear partial differential equations
非线性偏微分方程解的结构分析
  • 批准号:
    07454031
  • 财政年份:
    1995
  • 资助金额:
    $ 10万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)

相似海外基金

Partial differential equation: Schrodinger operator and long-time dynamics
偏微分方程:薛定谔算子和长期动力学
  • 批准号:
    FT230100588
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    ARC Future Fellowships
Learning Partial Differential Equation (PDE) and Beyond
学习偏微分方程 (PDE) 及其他内容
  • 批准号:
    2309551
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
Interplay Between Data and Partial Differential Equation Models Through the Lens of Kinetic Equations
通过动力学方程的视角观察数据和偏微分方程模型之间的相互作用
  • 批准号:
    2308440
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
CAREER: Exploiting Low-Dimensional Structures in Data Science: Manifold Learning, Partial Differential Equation Identification, and Neural Networks
职业:在数据科学中利用低维结构:流形学习、偏微分方程识别和神经网络
  • 批准号:
    2145167
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
CAREER: Partial Differential Equation and Randomness
职业:偏微分方程和随机性
  • 批准号:
    2042384
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
Partial Differential Equation Methods in Kinetic Theory and Their Applications
运动理论中的偏微分方程方法及其应用
  • 批准号:
    2106650
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
General-Domain, Scalable, Accelerated Spectral Partial Differential Equation Solvers and Applications in Simulation and Design
通用域、可扩展、加速谱偏微分方程求解器及其在仿真和设计中的应用
  • 批准号:
    2109831
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
CAREER: Partial Differential Equation and Randomness
职业:偏微分方程和随机性
  • 批准号:
    2203014
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
Global analysis for solution of dispersive partial differential equation with mass subcritical nonlinearity
具有质量次临界非线性的色散偏微分方程解的全局分析
  • 批准号:
    21H00993
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Algorithms and Numerical Methods for Optimization with Partial Differential Equation Constraints
偏微分方程约束优化的算法和数值方法
  • 批准号:
    2110263
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了