Study of singularities arising in nonlinear partial differential differential equations and asymptotic methods
非线性偏微分方程中奇异性的研究和渐近方法
基本信息
- 批准号:09304019
- 负责人:
- 金额:$ 13.76万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (A)
- 财政年份:1997
- 资助国家:日本
- 起止时间:1997 至 1999
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
(1) Dynamics of blow-up solutions Some blow-up solutions of a nonlinear heat equation can be continued beyond the blow-up time in a certain weak sense. Matano studied the dynamics of such solutions from the point of view of dynamical systems.(2) Motion of interfaces with random deviation In a class of diffusion equations involving a small parameter, say ε, solutions develop sharp transition layers, or interfaces, as ε→0. Funaki considered the case where the equation involves a random deviation term.(3) Estimate of blow-up time in a nonlinear heat equation Yanagida sutdied blow-up phenomena in a nonlinear heat equation and extended the classical results of Fujita and others.(4) Motion of interface in competition systems Mimura studied the behavior of interfaces that arise in the singular limit of a three-species competition-diffusion system.(5) Order-preserving systems in the presence of symmetry Matano extended the existing theory on order-preserving dynamical systems in the presence of symmetry. He then applied the general theory to the stability analysis of traveling waves and other problems.
(1)爆破解的动力学性质一类非线性热方程的爆破解在某种弱意义下可以继续存在。又野研究动态的解决方案,从角度来看,动力系统。(2)具有随机偏差的界面运动在一类含小参数(如ε)的扩散方程中,当ε→0时,解会发展出尖锐的过渡层或界面。Funaki考虑了方程包含随机偏差项的情况。(3)Yanagida研究了一类非线性热方程的爆破现象,推广了Fujita等人的经典结果。(4)竞争系统中界面的运动Mimura研究了三种群竞争扩散系统的奇异极限中出现的界面的行为。(5)Matano推广了已有的关于对称性存在下的保序动力系统的理论。然后,他将一般理论应用于行波和其他问题的稳定性分析。
项目成果
期刊论文数量(31)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Masahiro Yamamoto: "Uniqueness and stability in multidimensional hyperbolic inverse problems"J. Math. Pures Appl.. 78. 65-98 (1999)
Masahiro Yamamoto:“多维双曲反问题的唯一性和稳定性”J.
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
柳田 英二: "Blowup and life span of solutions for a semilinear parabolic equation"SIAM J. Math. Anal.. 29. 1434-1446 (1998)
Eiji Yanagita:“半线性抛物方程解的爆炸和寿命”SIAM J. Math.. 29. 1434-1446 (1998)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Masahiro Yamamoto: "Uniqueness and stability in multi dimentional hyperbolic inverse problems"J. Math. Pures Appl.. 78. 65-98 (1999)
Masahiro Yamamoto:“多维双曲反问题的唯一性和稳定性”J.
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
山本 昌宏: "Uniqueness and stability in multidimensional hyperbolic inverse problems"J. Math. Pures Appl.. 78. 65-98 (1999)
Masahiro Yamamoto:“多维双曲逆问题的唯一性和稳定性”J Math. 78. 65-98 (1999)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
三村 昌泰: "Singular perturbation problems to a combustion equation in very long cylindrical domains" Studies in Advanced Mathematics. 3. 75-84 (1997)
Masayasu Mimura:“长圆柱域中燃烧方程的奇异扰动问题”《高等数学研究》3. 75-84 (1997)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MATANO Hiroshi其他文献
MATANO Hiroshi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MATANO Hiroshi', 18)}}的其他基金
Analysis of interface motion and blow-up phenomena in nonlinear partial differential equations
非线性偏微分方程中的界面运动和爆炸现象分析
- 批准号:
20340033 - 财政年份:2008
- 资助金额:
$ 13.76万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Interface motion and blow-up phenomena in nonlinear partial differential equations
非线性偏微分方程中的界面运动和爆炸现象
- 批准号:
17340044 - 财政年份:2005
- 资助金额:
$ 13.76万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Qualitative theory and asymptotic analysis of nonlinear partial differential equations
非线性偏微分方程的定性理论与渐近分析
- 批准号:
13440028 - 财政年份:2001
- 资助金额:
$ 13.76万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Study of the Mathematical structure of singularities
奇点的数学结构研究
- 批准号:
11214202 - 财政年份:1999
- 资助金额:
$ 13.76万 - 项目类别:
Grant-in-Aid for Scientific Research on Priority Areas (B)
Analysis of the structure of solutions of nonlinear partial differential equations
非线性偏微分方程解的结构分析
- 批准号:
07454031 - 财政年份:1995
- 资助金额:
$ 13.76万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似海外基金
A new departure for qualitative theory of diamond-alpha difference equations
金刚石-α差分方程定性理论的新起点
- 批准号:
20K03668 - 财政年份:2020
- 资助金额:
$ 13.76万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies on the qualitative theory and singularities of nonlinear partial differential equations
非线性偏微分方程的定性理论和奇点研究
- 批准号:
16H02151 - 财政年份:2016
- 资助金额:
$ 13.76万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Existence, Stability, and Qualitative Theory of Traveling Water Waves
行进水波的存在性、稳定性和定性理论
- 批准号:
1514910 - 财政年份:2015
- 资助金额:
$ 13.76万 - 项目类别:
Continuing Grant
The Reconstruction of the Qualitative Theory of Perception
知觉定性理论的重建
- 批准号:
15K01980 - 财政年份:2015
- 资助金额:
$ 13.76万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Qualitative theory of integral equation with delay and its application
时滞积分方程的定性理论及其应用
- 批准号:
26400174 - 财政年份:2014
- 资助金额:
$ 13.76万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Qualitative theory of nonlinear partial differential equations and the analysis of singularitiesof
非线性偏微分方程的定性理论及其奇点分析
- 批准号:
23244017 - 财政年份:2011
- 资助金额:
$ 13.76万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
New development of the qualitative theory of nonlinear parabolic and elliptic equations
非线性抛物型和椭圆方程定性理论的新进展
- 批准号:
19204014 - 财政年份:2007
- 资助金额:
$ 13.76万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Qualitative theory of differential equations describing dynamics of infectious disease
描述传染病动力学的微分方程定性理论
- 批准号:
18540122 - 财政年份:2006
- 资助金额:
$ 13.76万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Approach to the qualitative theory of functional equations by phase plane analysis
通过相平面分析探讨函数方程定性理论
- 批准号:
16540152 - 财政年份:2004
- 资助金额:
$ 13.76万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Qualitative Theory on Oscillation of Solutions of Differential Equations
微分方程解振动的定性理论
- 批准号:
14540162 - 财政年份:2002
- 资助金额:
$ 13.76万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




