Qualitative theory and asymptotic analysis of nonlinear partial differential equations

非线性偏微分方程的定性理论与渐近分析

基本信息

  • 批准号:
    13440028
  • 负责人:
  • 金额:
    $ 10.3万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2001
  • 资助国家:
    日本
  • 起止时间:
    2001 至 2004
  • 项目状态:
    已结题

项目摘要

We have considered the behavior of solutions after the blow-up time for nonlinear heat equations with a power nonlinearity and those with an exponential nonlinearity. It is shown that singularities that apper at the blow-up time disappear and the solutions become smooth immediately (Matano, SIAM J.Math.Anal., in press). We have also studied the blow-up rate for nonlinear heat equations with a power nonlinearity and proved that the blow-up is always type 2 so far as the power is in the intermediate supercritical range (Matano, Comm.Pure Appl.Math., 2004).Yamamoto has studied an inverse problem of determining two unknown convection terms in a two-dimensional elliptic equation, and proved that those terms can be determined by the so-called Dirichlet-Neumann map (Inverse Problems, 2004).Weiss has considered a singular limit problem for parabolic equations that are applicable to the double obstacle problem. Using a new monotonicity formula, he has succeeded in exstimating the Hausdorff dimension of the free boundary (Calc.Var.PDE, 2003).Ei has studied a reaction-diffusion system on a two-dimensional cylinder and analysed the behavior of solutions having a pulse-like profile. He derived an equation governing the motion of slow pulses and proved that traveling pulses are mutually repelling (DCDS, Ser.A, in press).Taniguchi has considered the so-called "singular limit eigenvalue problem method" (SLEP method), which is a powerful tool in analyzing the stability of stationary solution of the singular limit problem. He has generalized this method so that it applies to problems in unbounded domains. Using this result, he has proved the stability of planar traveling waves in a bistable reaction-diffusion system (DCDS, Ser.B, 2003).
研究了一类具有幂非线性项和指数非线性项的非线性热方程解在爆破时刻后的行为。结果表明,在爆破时出现的奇异性消失,解立即变得光滑(Matano,SIAM J.Math.Anal.,印刷中)。我们还研究了具有幂非线性项的非线性热方程的爆破速率,证明了只要幂在中超临界范围内,爆破总是2型的(Matano,Comm.Pure Appl.Math.,2004). Yamamoto研究了确定二维椭圆型方程中两个未知对流项的反问题,并证明了这些项可以通过所谓的Dirichlet-Neumann映射确定(Inverse Problems,2004)。韦斯考虑了适用于双障碍问题的抛物型方程的奇异极限问题。利用一个新的单调性公式,他成功地计算了自由边界的Hausdorff维数(Calc.Var.PDE,2003).Ei研究了二维圆柱上的反应扩散系统,并分析了具有脉冲状轮廓的解的行为.他导出了慢脉冲运动的方程,并证明了行波脉冲是相互排斥的(DCDS,Ser.A,in press)。谷口考虑了所谓的“奇异极限特征值问题方法”(SLEP方法),这是分析奇异极限问题稳定解的有力工具。他推广了这种方法,使其适用于无界域的问题。利用这个结果,他证明了平面行波在一个非线性反应扩散系统中的稳定性(DCDS,Ser.B,2003)。

项目成果

期刊论文数量(94)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hydrodynamic limit for ▽Φ interface model on a wall
墙体 Φ 界面模型的水动力极限
A Singular Limit arising in Combustion Theory : Fine Properties of the Free Boundary
燃烧理论中出现的奇异极限:自由边界的精细性质
Funaki, T.: "Hydrodynamic limit for ∇φ interface model on a wall"Probab.Theory Relat.Fields. 126. 155-183 (2003)
Funaki, T.:“墙上 ∇φ 界面模型的流体动力学极限”Probab.Theory Relat.Fields 126. 155-183 (2003)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Yamamoto, M., (Imanuvilov, O., Isakov, V.): "An inverse problem for the dynamical Lame system with two sets of boundary data"Comm.Pure Appl.Anal.. 56. 1366-1382 (2003)
Yamamoto, M.(Imanuvilov, O., Isakov, V.):“具有两组边界数据的动力 Lame 系统的反演问题”Comm.Pure Appl.Anal.. 56. 1366-1382 (2003)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Instability of planar traveling fronts in bistable reaction-diffusion systems
双稳态反应扩散系统中平面行进前沿的不稳定性
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MATANO Hiroshi其他文献

MATANO Hiroshi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MATANO Hiroshi', 18)}}的其他基金

Analysis of interface motion and blow-up phenomena in nonlinear partial differential equations
非线性偏微分方程中的界面运动和爆炸现象分析
  • 批准号:
    20340033
  • 财政年份:
    2008
  • 资助金额:
    $ 10.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Interface motion and blow-up phenomena in nonlinear partial differential equations
非线性偏微分方程中的界面运动和爆炸现象
  • 批准号:
    17340044
  • 财政年份:
    2005
  • 资助金额:
    $ 10.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Study of the Mathematical structure of singularities
奇点的数学结构研究
  • 批准号:
    11214202
  • 财政年份:
    1999
  • 资助金额:
    $ 10.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas (B)
Study of singularities arising in nonlinear partial differential differential equations and asymptotic methods
非线性偏微分方程中奇异性的研究和渐近方法
  • 批准号:
    09304019
  • 财政年份:
    1997
  • 资助金额:
    $ 10.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Analysis of the structure of solutions of nonlinear partial differential equations
非线性偏微分方程解的结构分析
  • 批准号:
    07454031
  • 财政年份:
    1995
  • 资助金额:
    $ 10.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)

相似海外基金

A new departure for qualitative theory of diamond-alpha difference equations
金刚石-α差分方程定性理论的新起点
  • 批准号:
    20K03668
  • 财政年份:
    2020
  • 资助金额:
    $ 10.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies on the qualitative theory and singularities of nonlinear partial differential equations
非线性偏微分方程的定性理论和奇点研究
  • 批准号:
    16H02151
  • 财政年份:
    2016
  • 资助金额:
    $ 10.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Existence, Stability, and Qualitative Theory of Traveling Water Waves
行进水波的存在性、稳定性和定性理论
  • 批准号:
    1514910
  • 财政年份:
    2015
  • 资助金额:
    $ 10.3万
  • 项目类别:
    Continuing Grant
The Reconstruction of the Qualitative Theory of Perception
知觉定性理论的重建
  • 批准号:
    15K01980
  • 财政年份:
    2015
  • 资助金额:
    $ 10.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Qualitative theory of integral equation with delay and its application
时滞积分方程的定性理论及其应用
  • 批准号:
    26400174
  • 财政年份:
    2014
  • 资助金额:
    $ 10.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Qualitative theory of nonlinear partial differential equations and the analysis of singularitiesof
非线性偏微分方程的定性理论及其奇点分析
  • 批准号:
    23244017
  • 财政年份:
    2011
  • 资助金额:
    $ 10.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
New development of the qualitative theory of nonlinear parabolic and elliptic equations
非线性抛物型和椭圆方程定性理论的新进展
  • 批准号:
    19204014
  • 财政年份:
    2007
  • 资助金额:
    $ 10.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Qualitative theory of differential equations describing dynamics of infectious disease
描述传染病动力学的微分方程定性理论
  • 批准号:
    18540122
  • 财政年份:
    2006
  • 资助金额:
    $ 10.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Approach to the qualitative theory of functional equations by phase plane analysis
通过相平面分析探讨函数方程定性理论
  • 批准号:
    16540152
  • 财政年份:
    2004
  • 资助金额:
    $ 10.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Qualitative Theory on Oscillation of Solutions of Differential Equations
微分方程解振动的定性理论
  • 批准号:
    14540162
  • 财政年份:
    2002
  • 资助金额:
    $ 10.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了