Research of Endomorphisms on projective algebraic varieties
射影代数簇的自同态研究
基本信息
- 批准号:18540023
- 负责人:
- 金额:$ 1.03万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2006
- 资助国家:日本
- 起止时间:2006 至 2007
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The purpose of this research is to study the structure of smooth projective varieties X admitting a non-isomorphic surjective holomorphic map from X to itself which is called a nontrivial surjective endomorphism. Elliptic curves, abelian varieties, toric varieties etc. are typical examples of such varieties. And it is expected to have the very simple structure. In complex dynamical systems, a nontrivial surjective endomorphism on complex projective spaces and K3 surfaces has been mainly studied. Our viewpoint is to study the structure of the variety itself in view of the classification theory of algebraic varieties, not the endomorphism f. We have obtained a complete classification of smooth projective 3-folds with non-negative Kodaira dimension admitting a nontrivial surjective endomorphism. In 2002, the author has almost classified such varieties except one case and such exception has been solved in the joint work with Noboru Nakayama.
本文研究了光滑投射簇X的结构,其中X上存在一个非同构的满射全纯映射,称之为非平凡满射自同态。椭圆曲线,阿贝尔变种,复曲面变种等都是这些变种的典型例子。它的结构应该非常简单。在复动力系统中,主要研究了复射影空间和K3曲面上的非平凡满射自同态。我们的观点是从代数簇的分类理论出发研究簇本身的结构,而不是研究自同态f。我们得到了具有非负科代拉维数且允许非平凡满自同态的光滑射影3-折叠的完全分类。2002年,作者对这类品种进行了分类,但有一个例外,在与中山升的合作中得到了解决。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Endomorphisms of smooth projective 3-folds with nonnegative Kodaira dimension, II
具有非负 Kodaira 维数的平滑投影 3 重的自同态,II
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:中山昇;藤本圭男
- 通讯作者:藤本圭男
Endomorphisms of smooth projictive 3-folds with nonnegative Kodaira dimension,II
非负小平维数光滑射影三重的自同态,II
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Yoshio;Fujimoto;Yoshio Fujimoto
- 通讯作者:Yoshio Fujimoto
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
FUJIMOTO Yoshio其他文献
FUJIMOTO Yoshio的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('FUJIMOTO Yoshio', 18)}}的其他基金
A study of compact complex manifolds admitting non-isomorphic surjective endomorphisms
承认非同构满射自同态的紧复流形的研究
- 批准号:
23540055 - 财政年份:2011
- 资助金额:
$ 1.03万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
study of endomorphisms of projective algebraic varieties
射影代数簇的自同态研究
- 批准号:
20540048 - 财政年份:2008
- 资助金额:
$ 1.03万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Minimal model theory and its applications
最小模型理论及其应用
- 批准号:
22K13887 - 财政年份:2022
- 资助金额:
$ 1.03万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The minimal model theory for higher-dimensional algebraic varieties and singularity theory
高维代数簇的极小模型理论和奇点理论
- 批准号:
19J00046 - 财政年份:2019
- 资助金额:
$ 1.03万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Applications of minimal model theory to higher dimensional affine algebraic geometry
最小模型理论在高维仿射代数几何中的应用
- 批准号:
24740003 - 财政年份:2012
- 资助金额:
$ 1.03万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
A study on higher dimensional Fano manifolds using the minimal model theory with scaling
使用标度最小模型理论研究高维 Fano 流形
- 批准号:
23740028 - 财政年份:2011
- 资助金额:
$ 1.03万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Study of singularities in the minimal model theory in higher dimension
高维极小模型理论中的奇点研究
- 批准号:
20684002 - 财政年份:2008
- 资助金额:
$ 1.03万 - 项目类别:
Grant-in-Aid for Young Scientists (A)
Analysis of structures on affine algebraic varieties from the viewpoint of log minimal model theory
从对数极小模型理论角度分析仿射代数簇的结构
- 批准号:
20740004 - 财政年份:2008
- 资助金额:
$ 1.03万 - 项目类别:
Grant-in-Aid for Young Scientists (B)