The complex hyperbolic structures on the configuration spaces of points on the sphere and surface subgroup of mapping class groups

映射类群球面子群上点位形空间上的复双曲结构

基本信息

  • 批准号:
    18540085
  • 负责人:
  • 金额:
    $ 0.74万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2006
  • 资助国家:
    日本
  • 起止时间:
    2006 至 2007
  • 项目状态:
    已结题

项目摘要

(1) Structures of non-hyperbolic automatic groups(Joint work with Y. Nakagawa, M. Tamura)Let G be a finitely presented group. If G contains a Z + Z subgroup, then it is well known that G cannot be word hyperbolic. A natural question is that "is Z + Z the only obstruction for a finitely presented group to be word hyperbolic?" In other words, "if G does not contain any Z + Z subgroups, is it word hyperbolic?" Baumslag-Solitar groups are counter examples to this question. Thus it would be better to restrict our attention to some good class of groups. Here we focus on automatic groups. Note that Baumslag-Solitar groups are not automatic. Our problem is indicated in the list of open problems and attributed to Gersten. We call this problem "Gersten's problem".Recall that the class of all automatic groups contains the class of all hyperbolic groups, all virtually abelian groups and all geometrically finite hyperbolic groups. A geometrically finite hyperbolic group is, in some sense, similar to hyperbolic groups, but it might contain a Z + Z subgroup. Thus the class of automatic groups is a nice target to consider the question mentioned before.We define the notion of "n-tracks of length n", which suggests a clue of the existence of Z + Z subgroup and shows its existence in every non-hyperbolic automatic groups with mild conditions.(2) The character variety of one-holed torus(Joint work with S.P. Tan)The quasifuchsian space of punctured torus groups is deeply studied by many people and some of the major conjectures on them are solved in the last decade. But, for general "one-holed" cases, not much is known. In this study, we produced computer software to investigate the character variety of one holed torus and were able to find many interasting phenomena
(1) 非双曲自动群的结构(与Y. Nakakawa, M. Tamura 合作) 设G 为有限呈现群。如果 G 包含 Z + Z 子群,则众所周知 G 不能是字双曲线。一个自然的问题是“Z + Z 是有限呈现群成为词双曲线的唯一障碍吗?”换句话说,“如果 G 不包含任何 Z + Z 子群,那么它是双曲词吗?” Baumslag-Solitar 群是这个问题的反例。因此,最好将我们的注意力限制在一些好的群体上。这里我们重点关注自动组。请注意,Baumslag-Solitar 群不是自动的。我们的问题已在未决问题列表中指出并归因于 Gersten。我们称这个问题为“格斯滕问题”。回想一下,所有自动群的类包含所有双曲群、所有虚拟交换群和所有几何有限双曲群的类。在某种意义上,几何有限双曲群与双曲群类似,但它可能包含 Z + Z 子群。因此,自动群的类是考虑前面提到的问题的一个很好的目标。我们定义了“长度为n的n轨道”的概念,它提出了Z + Z子群存在的线索,并表明它存在于每个具有温和条件的非双曲自动群中。(2)单孔环面的特征变化(与S.P. Tan联合工作)穿孔环面群的拟福克空间被许多人深入研究。 人们以及关于他们的一些主要猜想在过去十年中得到了解决。但是,对于一般的“单孔”情况,人们知之甚少。在这项研究中,我们制作了计算机软件来研究单孔环面的特征变化,并发现了许多有趣的现象

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Drawing Bers embeddings of the Teichmu}ller space of once-punctured tori
绘制一次刺穿环面 Teichmuller 空间的 Bers 嵌入
Punctured torus groups And 2-ridge knot groups (1)
穿孔环面组和 2 脊结组 (1)
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Akiyoshi;Sakuma;Wada;Yamashita
  • 通讯作者:
    Yamashita
Dynamics of the mapping class group action on the SL (2,C) character variety of the one-holed torus, II
单孔环面 SL (2,C) 特征变体上映射类群作用的动力学,II
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Komori;Sugawa;Wada;Yamashita;Y.Yamashita;Yasushi Yamashita
  • 通讯作者:
    Yasushi Yamashita
Dynamics of the mapping class group action on the SL(2,C) character variety of the one-holed torus, II
单孔环面 SL(2,C) 特征变体上映射类群作用的动力学,II
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yasushi;Yamashita;Yasushi Yamashita
  • 通讯作者:
    Yasushi Yamashita
Computer experiments on the discreteness locus in projective structures
射影结构离散轨迹的计算机实验
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

YAMASHITA Yasushi其他文献

YAMASHITA Yasushi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('YAMASHITA Yasushi', 18)}}的其他基金

The geometry of the mapping class group action on the character variety of surface groups
映射类的几何图形群作用于人物各种曲面群
  • 批准号:
    23540088
  • 财政年份:
    2011
  • 资助金额:
    $ 0.74万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The mapping class group action on the space of representations of surface groups and complex dynamics
表面群和复杂动力学表示空间上的映射类群作用
  • 批准号:
    20540076
  • 财政年份:
    2008
  • 资助金额:
    $ 0.74万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Hyperbolic Geometry and Gravitational Waves
双曲几何和引力波
  • 批准号:
    2309084
  • 财政年份:
    2023
  • 资助金额:
    $ 0.74万
  • 项目类别:
    Continuing Grant
Topics in Non-Euclidean / Hyperbolic Geometry
非欧几里得/双曲几何主题
  • 批准号:
    2890480
  • 财政年份:
    2023
  • 资助金额:
    $ 0.74万
  • 项目类别:
    Studentship
Arithmetic Applications of Definable and Hyperbolic Geometry
可定义几何和双曲几何的算术应用
  • 批准号:
    RGPIN-2019-04178
  • 财政年份:
    2022
  • 资助金额:
    $ 0.74万
  • 项目类别:
    Discovery Grants Program - Individual
The Jones Polynomial and Hyperbolic Geometry of Surfaces
曲面的琼斯多项式和双曲几何
  • 批准号:
    2203255
  • 财政年份:
    2022
  • 资助金额:
    $ 0.74万
  • 项目类别:
    Continuing Grant
Hyperbolic Geometry and Quantum Invariants
双曲几何和量子不变量
  • 批准号:
    2203334
  • 财政年份:
    2022
  • 资助金额:
    $ 0.74万
  • 项目类别:
    Standard Grant
Towards a mathematical description of complex networks: Effective structure and latent hyperbolic geometry
走向复杂网络的数学描述:有效结构和潜在双曲几何
  • 批准号:
    RGPIN-2019-05183
  • 财政年份:
    2022
  • 资助金额:
    $ 0.74万
  • 项目类别:
    Discovery Grants Program - Individual
Conference on Complex Hyperbolic Geometry and Related Topics
复杂双曲几何及相关主题会议
  • 批准号:
    2225583
  • 财政年份:
    2022
  • 资助金额:
    $ 0.74万
  • 项目类别:
    Standard Grant
INVARIANT ALGEBRAS IN HYPERBOLIC GEOMETRY
双曲几何中的不变代数
  • 批准号:
    EP/V048546/1
  • 财政年份:
    2021
  • 资助金额:
    $ 0.74万
  • 项目类别:
    Research Grant
Arithmetic Applications of Definable and Hyperbolic Geometry
可定义几何和双曲几何的算术应用
  • 批准号:
    RGPIN-2019-04178
  • 财政年份:
    2021
  • 资助金额:
    $ 0.74万
  • 项目类别:
    Discovery Grants Program - Individual
Towards a mathematical description of complex networks: Effective structure and latent hyperbolic geometry
走向复杂网络的数学描述:有效结构和潜在双曲几何
  • 批准号:
    RGPIN-2019-05183
  • 财政年份:
    2021
  • 资助金额:
    $ 0.74万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了